
AOAIIS AUNIX BASED DEVICE DRIVER FOR THE VECTOR GENERAL 3404 GRAPIICS--ETC(U)
MAR GE m Rt STEWART

UNCLASSIDFIED AFIT/GCS/NA/BID46M

* 4 ; f

I,

DTlC

DEPARTMENT OF THE AIR FORCE SElP\
AIR UNIVERSITY (ATC)-

C~AIR FORCE INSTITUTE OF TECHNOLOGY
Lii

Wright-Patterson Air Force Base, Ohio

rs,= 06 14" /n lu-

Ii ' L ~ ~~I II mli=] d i[* ftl IIili l ii l4 I

IL&MfLECw" Ile=Dnft

APIT/GCS/MA/81D-6

A UNIX BASED DEVICE 7DRIVER FOR TITE
VECTOR GENERAL 34-o4~ GRAPHICS

DISPLAY SYSTEM

THESIS

AFIT/GCS/MA/81D-6 Bradley R.-Stewart
2nd Lt USAF

Approved for public release; distribution unlimited

AFIT/GCS/MA/8 1D-6

* A UNIX BASED DEVICE DRIVER FOR THE VECTOR

GENERAL 34014 GRAPHICS DISPLAY SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Accession For
WITS GRA&r
DTIC TAB

Uninnounced

BAvailabilityCo.

Dist I and/or

by DitISPecial

Bradley R. Stewart, B.S.

2nd Lt USAF

Graduate Computer Systems

March 1982 WSPEret

Approved f'or public release; distribution unlimited

Preface

The purpose of this study was to develop device driver

software for Vector General 3404 Graphics Display System.

The device driver software was installed on a PDPII/60 com-

puter running under the UNIX version seven operating system.

This report discusses all of the major components of

the sysuem. These include the UNIX peripheral device I/O

processing routines, the hardware interface between the PDPll/60

and the display system, the Vector General 3404 Graphics dis-

play system, and the device driver routines. I believe this

work will be very helpful to anyone working on peripheral

device I/O processing under the UNIX operating system.

I would like to thank my advisor, Professor Charles W.

Richard, Jr., for his constant support and encouragement

during this study. Deep gratitude is also expressed to

Dr. J. Lions of the University of New South Wales for his

brilliant commentary on the UNIX operating system. And

finally, I wish to acknowledge my gratitude to Mary Minnick

for her effort in typing this thesis.

Bradley R. Stewart

.A

Contents

Page

Preface ii

List of Figures viii

List of Tables x

Abstract xi

I. Introduction 1

Background 1
Scope and Objectives 4
Approach 5
Conventions Used 6
Overview of the Thesis 8

II. Preliminary Concepts i.11

The UNIX File System I.11
Ordinary Files I1
Directory Files 12
Special Files. 12
File System Hierarchy 12
File Path Names 14
File System Implementation 15

The UNIX I/0 System 17
Basic I/O System Calls 17
Device Classes 19
Device Names 19

Process Management 20
The Proc Structure 20
The User Structure 21

Summary 22

III. Peripheral Device I/O 23
Flow of Control During I/O Processing 23

Processing User Program I/0 Requests 25
The User Program and I/O System Calls. .. 26
The System Trap Mechanism 27
UNIX Trap Handler Routines 29
System-Call Switch Table 31
I/O System-Call Handler Routines 33

Open 33
Close. 35
Read and Write 36
Stty and Gtty 37

Device Switch Tables 38
Summary 42

Processing Peripheral Device Interrupts . . 2

Iii

Contents

Page

Peripheral Device Events 44
The System Interrupt Mechanism 45
The UNIX Interrupt Handler Routine 47KSummary. 47

IV. The Vector General 3404 Graphics Display System 48

Overall Description. 48
Functional Description off Major Display
System Components. 50

Computer/Display System Interface. 50
Graphic Processor Unit 50
Refresh Buffer Unit. 51
Display Control Unit 51
Vector Generator Unit. 52
Font Generator Unit. 52
Monitor Control Unit 52
Display Monitors 52
Display System Input Devices 52
Options. 53

Display System Registers 53
Data Tablet Registers. 54
Function Switch Box Registers. 55
Alphanumeric Keyboard Register 56

Summary. 57

V. The PDPll/VG3404 Hardware Interface 58

Accessing the Interface Registers. 59
The Interface's Eight I/0 Instructions 62
Channel Communication. 65

The DMA Channel. 65
The Interrupt Channel. 69
The Programmed Input/Output Channel ... 70

Summary. 73

-~ VI. The VG Device Driver. 74

Requirements 74
Original Requirements. 74
Requirements for AFIT's VG Device Driver 77

Overall Design 78
Implementation......... 81

User Level Implementation... 81
The GPU Minor Device. 82

Op/en/ dev/gpu.. .. 82
Read /dev/gpu 82
Write /dev/gpu....... . . . 82
Stty /dev/gpu 83
O tty /dev'gpu.... 84

iv

Contents

Page

Close /dev/gpu. 84
The Data Tablet Minor Device 85

Open /dev/dtb 85
Read /dev/dtb 85
Write /dev/dtb. &
Stty /dev/dtb 88
Gtty /dev/dtb 89
Close /dev/dtb. 89

The Alphanumeric Keyboard Minor
Device 89

Open /dev/kbd 89
Read /dev/kbd 89
Write /dev/kbd. 90
Stty and Gtty /dev/kbd. 90
Close /dev/kbd. 91

The Function Switch Box Minor
Device 91

Open /dev/fss 91
Read /dev/fss 91
Write /dev/fss. 92
Stty and Gtty /dev/fss. 92
Close /dev/fss. 92

The Device Driver Routines 93
Include Files 93
Global Data Structures 93

The UNIX proc and u
Structures. 94
The vgunit Array. 94
The VG Minor Device
Switch Table. 96

Common Procedures 97
PIN and POUT. 97
gpwait and gpurestart 98
putc and getc 99
passc................100
sleep and wakeup........100
psignal 101
fuiword and suiword 101

Major Device Routines. 102
vgopen. 102
vgclose. 103
vgread 103
vgwrite. 103
vgioctl. 103
vgint. 10

Minor Device Routines. 14
GPU Routines. 105

gpopen 105
4gpclose. 106

rbread 106

V I

Contents

Page

gpwrite 107
vgsgtty 107

Data Tablet Routines . . . 110
dtopen 110
dtclose 110
dtread 1i
dtwrite ill
fskbdtsgtty ill
dtintr 112

The Alphanumeric
Keyboard Routines 113

kbopen 113
kbclose 113
kbread 113
kbwrite 113
kbintr 14.....11

The Function Switch
Box Routines 114

fsopen 114
fsclose 114
fsread 115
fswrite 115
fsintr 115

Summary 116

VII. Device Driver Updates 117

Space Limitations 117
Removal of Level One Graphics
Support 117
Removal of Code for Timeouts. 118
Removal of Code for Light Pen 118

Display System Differences 119
Differences Between UNIX Versions
Six and Seven 119
Summary 121

VIII. Installing the VG Device Driver 122
Creating the Special Files 123

Relocating the Driver Source Files 126
Producing and Archiving the Driver
Object File 127
Editing the Character Device Switch
Table - 129
Editing the Interrupt Vector File . . _ . . . 131
Producing the UNIX Object File /unix.vg . . . 132
Restoring the Changed UNIX Files. 134
Rebooting the System from /unix.vg 135
Summary 135

vi
JM

F W-h

Contents

Page

IX. Software Testing 136

GPU Tests 136
Data Tablet Tests. 1141
Keyboard Tests. 143
Function Switch Box Tests 144

Summary. 145

X. Conclusions and Recommendations 146I

Bibliography 150

Appendix A: Listings of UNIX Source Files
/sys/h/proc.h and/sys/h/user.h. 152

Appendix B: Listing of UNIX Source File
/sys/conf/1.s.vg. 161

Appendix C: Listing of UNIX Source File
/sys/conf/c.c.vg. 165

Appendix D: Listings of Driver Source Files
/sys/h/vg.h and /sys/dev/vg.c. 17

Appendix E: Listing of File /sys/conf/makefile 191

Appendix F: Creation of Special Files for the VG
Graphics Device 195

Appendix G: Major System Directories. 196

Appendix H: Rebooting the System From
UNIX Object File /unix.vg 197

Vita 200

Vii

List of Figures

Figure Page

1 Organization of Major System Components 9

2 File System Hierarchy 13

3 File System Data Structure 16

4 Flow of Control During I/O Processing 24

5 I/O Processing Routines and Control
Transfer Mechanisms 25

6 System-Call Trap Vector 28

7 System-Call Switch Table 32

8 Routines For Processing an open(2)
System Call 33

9 Routines For Processing a close(2)
System Call 35

10 Routines For Processing the read(2)
and write(2) System Calls. 36

11 Routines For Processing the stty and
gtty System Calls 38

12 Main Routines Called During Peripheral
I/O Processing 43

13 Interrupt Processing Routines and
Control Transfer Mechanism 44

14 Interrupt Vector for VG Display System ... 46

15 Display System Organization 49

16 Input Device Registers 55

" 17 Interface Communication Channels 59

18 Using a Dummy Structure to Access the

Contents of the Interface Registers 63

19 Communication Channel Usage 66

20 McCallum's Two Levels of Graphics Support . . 75

21 Device Driver Design 79

viii

Figure Page

22 The vgunit Data Structure 95

23 Design of the vgsgtty Routine 108

24 Location of Relevent Files and Commands 124

I

• I Iix

List off Tables

Table Page

I Stty Special Functions. 84

II Data Tablet Interrupt IDs 86

III Data Tablet Interrupt Masks 87

x

APIT/GCS/MA/81D-6

Abstract

A device driver for the Vector General 3404 Graphics

Display System was installed under the UNIX version seven

operating system on a PDPll/60 computer. This was accom-

plished by modifying an existing device driver which was de-

signed to run under version six of the UNIX operating system.

The major topics addressed in this report are the C

programming language, peripheral device I/O processing under

UNIX, the hardware interface between the PDPlI/60 and the

graphics display system, the graphics display system itself,

and the existing device driver software.

Structure charts were used to document the design of the

UNIX peripheral device I/0 processing software and the design

of the device driver software. Modifications to the original

device driver were easily accomplished due to the top-down

modular design of the original software. UNIX provided a

straight-forward interface for adding the device driver soft-

ware to the system.

xi

A UNIX BASED DEVICE DRIVER FOR THE
VECTOR GENERAL 3404 GRAPHICS DISPLAY SYSTEM

I Introduction

The problem addressed in this thesis investigation was the

development and installation of device driver software for a vector

General 3404 Graphics Display System (hereafter referred to as

the VG graphics device or the VG display system).

The software was installed under the UNIX version seven

operating system running on a PDP11/60 computer. This effort

was intended as a first step in the development of a high-

level interactive graphics system for the PDPII/60 running

under UNIX.

This chapter presents the background to the problem,

scope and objectives, approach taken, conventions used, and

finally an overview of the remainder of the thesis.

Background

In July, 1981 the RSX-11M operating system running on the

PDPII/60 computer at the Air Force Institute of Technology

(AFIT) was replaced by the Bell System's UNIX version seven

operating system. This replacement was justified by a number

of desirable UNIX features not offered by the RSX-11M operating

system.

First of all, UNIX provides more software tools for

education. It supports several different programming lan-

guages and provides excellent facilities for document

1A

preparation.

UNIX also provides very powerful tools for program

development. An example is the UNIX capability of creating

a "pipe" for inter-process communication. In a pipe, as

output is generated from one program it is immediately made

available as input to the next program (Refs 2:2; and 13:8).

Therefore, a pipe facilitates executing programs together

as a complete system. That is, a large software system can

be designed and developed in small pieces, then brought

together and executed in a pipe.

The UNIX system is totally self supporting. All UNIX

software is maintained on the system. With only 10,000 lines

of code, the system can easily be understood and maintained

by one person. Of the 10,000 lines Qf UNIX code, less than

ten percent is written in assembly language. The remaining

ninety percent is written in the general-purpose procedural

language "C". This high level language enhances system

understandability and maintainability.

Ritchie and Thompson list the following desirable UNIX

features seldom found even in larger operating systems

(Ref 13:1).

1. A hierarchical file system incorporating
demountable volumes.

2. Compatible file, device, and inter-process I/0.
3. The ability to initiate asynchronous processes.
4. System command language selectable on a per

user basis.
5. Over 100 subsystems, including a dozen languages.
6. High degree of portability.

(=

2

These features make UNIX simple, elegant, and easy to use.

With the upgrade to UNIX, it became necessary to upgrade

the graphics package on the PDPl/60. FGP3u, a graphics

package based on ACM/SIGGRAPH's Core System standard proposal

(Ref 15), is the package that ran under the RSX-11M operating

system. This package is not readily compatible with UNIX.

In order to run FGP34 under UNIX, a new device driver would

have to be written. This could be very difficult to

impossible depending on how strongly the FGP34 software is

dependent on the RSX-11M operating system. Another issue

that must be considered is that FGP34 does not support com-

plete device independence. That is, it only runs with the

Vector General 3400 series display systems. Therefore, when

other types of graphics devices are installed on the PDPll/60

in the future, the FGP34 will not support them.

As a result of these problems and limitations, it was

decided to acquire a better graphics software system, e.g.,

one based on the Core System that is operating system inde-

pendent and device independent. One good candidate that has

been identified is GRAFLIB, a graphics software system

developed by the Lawrence Livermore Laboratory (Ref 6).

No matter which high level graphics software system is

finally implemented, a new low level device driver had to be

installed under UNIX for the VG graphics device. When this

investigation was begun, the author knew of no VG device drivers

written to run under UNIX version seven. At the same time,

it was known that two different VG device drivers did exist

• -- " - J I - "1 " •3

for UNIX version six. One had been developed at The

University of Kansas. Another had been developed at The

University of Texas at Austin. in order not to "re-invent"

the wheel, it was decided to modify one of these existing

drivers to run under UNIX version seven.

The driver developed at the University of Texas at Austin

was chosen because of its straight forward, top-down design

and because the driver source code was easy to obtain. The

driver was written by Douglas McCallum in support of his

thesis on machine-independent interactive computer graphics

(Ref 12). It was designed for the UNIX version six operating

system running on a PDP11/34 computer.

Scope and Objectives

This thesis investigation was devoted to updating and in-

stalling McCallum's VG device driver on the PDP1/60 computer under

the UNIX version seven operating system.

One main objective was to, as much as possible, use

McCallum's device driver software "as is". Modifications

were only made to make the driver compatible with UNIX version

seven and to meet the space limitations of AFIT's PDP11/60

computer. Also, since McCallum's driver did not support the

VG's data tablet input device, software was developed and

incorporated to support AFIT's data tablet.

Another main objective was to document how the VG driver

works. This included an explanation and description of the

UNIX operating system, the hardware interface between the

PDPI1/60 and the VG graphics device, the VG graphics device

4_ _

itself, and the driver routines.

Approach

This project required a working knowledge of the "C"

programming language, the UNIX operating system (both versions

six and seven), the PDPl1/VG3404 hardware interface, the VG

graphics device at the register level, McCallum's driver

software, and driver installation procedures.

First, UNIX was studied from a user's point of view to

learn how to use the system. The article "An Introduction

to the UNIX Shell" and "UNIX for Beginners - Seventh Edition"

served as tutorials for this step (Refs 2 and 9). The UNIX

text editor was learned next by studying the article "A

Tutorial Introduction to the UNIX Text Editor" (Ref 8).

Next, the "C" programming language was learned by

writing and executing programs that illustrated the major

features of the language. Kernighan and Ritchie's book

entitled The C Programming Language was used as a tutorial

during this step (Ref 7). This step was essential since

both UNIX and the device driver are written in "C".

After learning the basics above, UNIX was studied from

a systems point of view to learn how it deals with device

drivers in general. J. Lions' commentary on the UNIX operating

system, along with listings of UNIX source code, served as

the main tutorial for this step (Refs 10 and 11). The

differences between UNIX version six and UNIX version seven

were also studied at this point.

Study of Vector General documentation provided an

understanding of the PDPll/VG3404 hardware interface and

the VG graphics device at the register level. The most

important of these documents were the Programming Concepts

Manual, the System Reference Manual, the PDPll Interface

Specification, and volume one of The Series 3400 Technical

Manual (.Refs 17-20).

The knowledge obtained from the above studies helped

the author understand McCallum's driver software. Some help

was also received through telephone conversations with

Douglas McCallum. Once the driver was understood, it was

updated to run under UNIX version seven. Next, the driver

was installed on the system using the articles "Regenerating

System Software" and "Setting Up UNIX" as a guide for in-

stallation procedures (Refs 4 and 5).

The final step was the development and incorporation of

routines to handle the VG data tablet input device.

McCallum's routines for the VG function switches and keyboard

input devices served as a guide for writing these routines.

Conventions Used

A few conventions are identified here that are used

.throughout the report.

All references to UNIX system commands are specified

by the command name followed by a section number in paren-

thesis. The section number refers to the section of the

UNIX Programmer's Manual (Ref 1) where the command is defined.

6I
|i

For example, cp(l), refers to the copy system command which

is found in section 1 of the UNIX Programmer's Manual. This

system was adopted because the UNIX Programmer's Manual does

not have page numbers.

Another convention that merits explanation is how com-

puter code is cited in this report. Two types of code are

cited in this report; a stream of UNIX system commands

entered from a terminal and listings of "C" language statements

taken from computer programs. The following UNIX system command

stream illustrates how a stream of UNIX command statements

1. # cd /sys/conf
2. # cp /sys/dev/vg.c/sys/dev/vg
3. # mkdev i vg
4. cp ../h/parami.h ../h/param.h
5. a - vg.o
6. # rm /sys/dev/vg
7. #

is cited in this report. First, the statements are numbered

sequentially to provide a means of referencing each indivi-

dual line. If only one statement is cited then it is not

numbered. The symbol "#" is a prompt sign printed by the

system. Following the prompt sign the user types a command
statement followed by a carriage return. The system executes

the command then prints another "#" to prompt the user for

"more input. Lines not beginning with the "#" prompt, as with

lines four and five above, represent messages or text printed

during the execution of a command.

The "#" prompt is also an indication that the user is

logged in as the super-user. The super-user is granted

special access rights and priviledges that other users do

not receive. These rights and priviledges allow the super-

user to make any necessary changes to the system, such as

install a new device driver.

The "C" language statement listing

1. dtclose()
2. { extern struct cdevsw vgdev[);
3. POUT(dtb, 0);
4. while (getc(&vgunit[) .io) >= 0);
5. 1

is an example of how portions of computer programs are cited

in the report. The statements are simply numbered sequentially

so each individual line can be referenced easily.

Overview of the Thesis

The block diagram depicted in Figure 1 orients the reader

to the system components and the communication paths between

them. The main body of the thesis describes these components

and communication paths in detail. The remainder of the

report is outlined below.

In order to establish a common base to work from, some

basic concepts of the UNIX operating system are presented in

chapter two. This includes a description of the UNIX File

.System, the UNIX I/O System, and process management.

Chapter three describes in detail how UNIX processes

user program requests for peripheral device I/O, how it

deals with device drivers, and how it processes interrupts

from peripheral devices.

.i 8

r-1Gz

4.)

040

W W

F4-

H 0

(ti

P4 W4

Q 4.)
H >)

>, -H-

4)) P

C4

4., 0

* 44

9

The VG is described down to the register level in

chapter four. This is necessary because the device driver

deals mainly with reading and writing the VG's internal

registers.

Chapter five is a description of the hardware interface

between the PDPll/60 and the VG graphics device. All data

and control communication between the PDPll/60 and the VG

take place via this interface.

The device driver software is documented in chapter six.

This includes a specification of the overall requirements,

a description of the software design, an a detailed discussion

of implementation details. The discussion on driver imple-

mentation includes both user level implementation and docu-

mentation of the driver routines in their final state, e.g.,

after updating for UNIX version seven and trimming to meet

space limitations.

Chapter seven describes the changes made to McCallum's

original driver to make it compatible with AFIT's system.

The procedure for installing the device driver is des-

cribed in detail in chapter eight.

The software testing methodology is described in chapter

nine. All of the tests performed on the driver software are

also incluced.

Finally, conclusions and recommendations are given in

chapter ten.

10

II Preliminary Concepts

A detailed knowledge of certain aspects of the UNIX

operating system is required for developing and installing

peripheral device driver software on the system. In order to

gain this detailed knowledge, the basic concepts must first

be understood.

This chapter presents a discussion of some basic UNIX con-

cepts. Emphasis is placed on those concepts that will aid the

reader in understanding the more detailed UNIX concepts presented

in subsequent chapters. The main ideas covered here are the UNIX

file system, the UNIX I/0 system, and process management.

The UNIX File System

Ritchie and Thompson have stated, "the most important role

of the system is to provide a file system" (Ref 13:2). UNIX

supports a hierarchical disk based file system composed of

three different kinds of files: ordinary, directory, and

special. Each. of these files is stored as a one dimensional

array of bytes. Structure within these files is controlled by

the programs that use them and not by the system.

Ordinary files, directory files, special files, file

system hierarchy, file path names, and file system implementa-

tion are discussed in this section.

Ordinary Files. Ordinary files can be created by any

user. They contain whatever the user puts in them, e.g., data,

source programs, object (binary) programs, etc. Access per-

711

mission to ordinary files is controlled by the file owner

and/or by the super-user, i.e., the person in charge of main-

taining the entire system.

Directory Files. Directory files are maintained by the

system. They can only be written by the system. A user pro-

gram may not open a directory file for writing. Directories

may contain names of ordinary files, special files, and other

directory files. For each file name entry, the directory

maintains a pointer, called the i-number (for index number),

to the information actually describing the file. In other

words, each directory entry provides a mapping between a file

name and the actual file. The i-number will be described

later in detail.

Special Files. A special file is a file that has been

associated with an I/O device. By UNIX convention, these files

all reside in directory /dev. User programs access I/O devices

through references to the special files associated with the I/O

devices. User programs may open, close, read, and write special

files as if they were ordinary disk files. When special files

are referenced from a user program, the system calls the appro-

priate device driver routine to activate the associated device

(Ref 13:3). This is a key concept in this thesis because the

VG graphics device has four of these pecial files associated

with it for I/O purposes. These four special files are des-

cribed in detail in chapter six.

File System Hierarchy. Directories are maintained by

12

_. | . . • • • , - -- ' _" • - , .- 7 7

I~.

alpha sigma

beta deta

gamma

Fig 2. File System Hierarchy

*the system as a hierarchy in the form of a rooted tree. An

example of such a rooted tree is illustrated in Figure 2. In

this figure, as with the UNIX file system, the root directory

is denoted by a slash character, "/". The root directory

contains the files alpha and sigma. Alpha is also a directory

file containing files beta and delta. Beta is a directory

file containing file gamma. All non-leaf files in the rooted

tree are directory files. Files delta, gamma, and sigma could

be either ordinary, special, or empty directory files.

13

" --

Many of the higher level directories in the file system

hierarchy are reserved for system use. They cpntain system

commands, UNIX source and object files, utility programs, etc.

The super user adds directories to the file system for

each user. These directories may be added to any level of the

hierarchy. They are created for the user's own files. Users

manage files within their respective "home" directories through

the use of system calls. They may do such things as add and

remove files from their own directories. They may also create

and manage sub-directories attached to their original home

directories.

File Path Names. A file may be specified to the system

in terms of its path name. Ritchie and Thompson describe this

concept well.

"When the name of a file is specified to the
system, it may be in the form of a path name,
which is a sequence .f directory names separated
by slashes, "/", and ending in a file name. If
the sequence begins with a slash, the search
begins in the root directory. The name /alpha/
beta/gamma causes the system to search the root
for directory alpha, then search alpha for beta,
finally to find gamma in beta. Gamma may be an
ordinary file, a directory, or a special file.
As a limiting case, the name "/" refers to the
root itself." (Ref 13:3)

If the path name does not start with a "/" then the

system begins searching in the user's current directory. When

a user logs onto the system, the user's assigned home direc-

tory becomes the current directory. The current directory may

be changed through use of the change directory system call, cd(l).

14

.. - - -. .L

File System Implementation. A detailed description of

the implementation of the UNIX file system is given by

Thompson and Ritchie (Ref 13:6-7 and 16:7-9). The main ideas

are presented here.

The system maintains a list of file definitions called

the "i-list". This list resides on secondary storage

(usually on disk) and consists of one "i-node" for each file

that exists in the file system. The integer offset of an

i-node in the i-list is called the i-number. It is used for

referencing the i-node and is stored in a directory along with

the file name associated with the i-node.

Each i-node contains all the information needed to define

a file, such as; the type of file, access permissions, the

number of links to the file, etc. (Ref 13:6) For non-special

files, the i-node contains information about where the file

resides on disk (Refs 13:6 and 16:7). For special files, the

i-node contains a device class and a device name. These are

used by the system to invoke the appropriate device driver

when a user program requests access to a special file.

Figure 3, adapted from Thompson (Ref 16:8), shows the

data structures maintained by the system during file access.

. i Each user process is allocated an open file table. This table

*= contains pointers to entries in the system open file table.

As a user process is swapped in and out of core, its open file

table is swapped along with it. The system open file table

and the active i-node table are always resident in core. The

i-list resides on disk.

15

= - i , - . . . '= - =,---. *. . .. 'I _. .z. - " "- .,.. - + - ,

AL)

0o0

I~r4

0 H0

44-)

U3 0 a) .

C)

r4

(D E-4

4-) [J 4 V

3: 4)W .1d),r
V)a4w 4 i C P4HC

16W

"-4
_

To access an existing file, a user program must first

"open" it via the open(2) system call. The file's pathname

is specified as one of the input parameters for this call.

The system uses the pathname to search the hierarchy of

directories until the specified file name is found. Next,

jI the i-number stored in the directory with the file name is

retrieved. The i-number is used to access the appropriate

21 i-node. The system checks the file's access permissions

(stored in the i-node) to verify that the requested access is

1legal. If it is, the system copies the disk version of the

i-node into the active i-node table. A pointer to this active

i-node table entry is entered in the system open file table.

A pointer to this system open file table entry is entered in

the user's open file table. The integer offset of the entry

just made in the user's open file table is called a file

descriptor. It is passed back to the user program. The user

program passes the file descriptor as an input parameter on

all subsequent system calls requesting access to the open file.

The UNIX I/0 System

This section begins with a description of basic I/O system

calls. This is followed by a discussion of device classes

and device names which are used during peripheral device I/O

processing.

Basic I/0 System Calls. A user program requests I/0

through the use of the open(2), close(2), read(2), write(2),

stty, and gtty system calls (see ioctl(2) for the stty and

17

gtty system calls). The open(2), close(2), read(2), and

write(2) system calls may be used on both ordinary and

special files, while the stty and gtty calls are only used

on special files. The open(2) call opens a file for access

while the close(2) call terminates access to a file. The

open(2) call passes two parameters to the system; (1) the

path name of a special file and (2) an access mode. If the

access mode specified is 0 then the I/O request is for reading

only. If the access mode equals 1 then the request is for

writing only. If it equals 2 then the request if for both

reading and writing. The open(2) call returns a file des-

criptor which must be used in subsequent I/O requests on the

open file. The close(2) system call passes one parameter to

the system; a file descriptor.

The read(2) and write(2) calls pass three parameters to

the system; (1) the file descriptor obtained from the open(2)

system call, (2) a pointer to a user buffer, and (3) the

number of bytes requested. With the read(2) system call, up

to the number of bytes requested are read into the user buffer.

The system returns the number of bytes actually read. With

the write(2) command, the number of bytes requested are written

from the user buffer to the specified file. The number of bytes

actually written is returned to the user program.

The stty and gtty commands are used to set and get character-

istics of peripheral devices. These system calls each pass two

input parameters to the sytem; (1) a file descriptor and (2) a

pointer to a user buffer. The contents of the user buffer

18

specify which device characteristics to set or get.

When a user program invokes one of these basic I/O

system calls on a special file, the operating system activates

the associated peripheral device via device driver routines.

The device class, part of the device name, and the type of

I/O system call determine which device driver routine is in-

voked. The appropriate device driver routine performs the

requested I/O function on the peripheral device then returns

control to the operating system which then returns control to

the user program, passing back the appropriate data. Device

classes and device names are now discussed.

Device Classes. Each I/O device falls into one of two

categories; block oriented or character oriented. Block

oriented devices are devices such as disk and tapes which deal

with 512-byte blocks. All other devices are considered chara-

ter oriented. Therefore, the VG graphics device is a character

oriented device.

Special files associated with block I/O devices are marked

as block oriented, while those associated with character devices

are marked as character oriented. This information is carried

in each special file's i-node.

Device Names. The system assigns a device name to each

special file. It is stored in the special file's i-node.

The device name is made up of a major device number and a

minor device number. These are stored in the i-node as a 16

bit computer word with the major number in the high order 8

bits and the minor number in the low order eight bits (Ref 14:l).

19

When a user program requests access to a special file,

the file's device class, major device number, and the type of

I/O request determine which device driver routine to invoke.

The special file's minor device number is passed to the device

driver routine as an argument (Ref 16:5).

Any meaning associated with the minor device number is

assigned by the device driver routine itself. For example, if

there are several identical I/O devices on a system, the minor

device number could be used to indicate which one of the I/O

devices to activate. Another example would be I/O devices com-

posed of several sub-devices. In this case, the minor device

number could be used to indicate which sub-device to activate.

Process Management

Ritchie and Thompson identify an "image" as a computer

execution environment and a "process" as the execution of an

image (Ref 13:8). Roughly speaking, a process may be defined

as "a program in execution" (Ref 10:7-1).

UNIX allocates two data structures for each process on

the system. They are the "proc" structure and the "user"

structure. These structures make up part of the overall pro-

cess image. A complete listing of each is included in Appendix

A.

The Proc Structure. The proc structure for each process
is permantly resident in core. This structure is defined in

the UNIX source file /sys/h/proc.h. It contains information

that must be accessible at any time, especially when the main

part of the process image has been swapped out to disk. Lions

20

-. -. ~ --. ..

describes the information carried in the proc structure in his

commentary on the UNIX operating system (Ref 10:7-2).

The User Structure. The user structure assigned to each

process is swapped in and out of core with the swapable portion

of the process image. At any given time, the only user struc-

ture in core is the one assigned to the process currently being

executed. While in core the user structure is referenced as

the "u" structure.

The u structure is defined in the UNIX source file

/sys/h/user.h. It contains such information as user identi-

fication,parameters for I/0 operations, file access control,

system call parameters, and accounting information.

The u structure is accessed often during execution of

a process. Each element of the u structure is accessed by

stating the name of the structure, followed by the structure

member operator '.', followed by zhe element name (Ref 7:120).

For example,

u.u base

is a reference to the element u base of the u structure.

Both the UNIX operating system and the device driver

routines access the u structure often while processing peri-

pheral device I/O requests. The individual elements of the u

structure needed for I/O processing are described throughout

this report as needed.

21

....................................

Summary

Some basic concepts of the UNIX operating system were

presented in this chapter. Emphasis was placed on those UNIX

concepts that pertain to this thesis project. With these

basic concepts as a foundation, the next chapter describes

how UNIX processes user program requests for peripheral device

I/O.

,L ._. 22

III Peripheral Device I/0

The UNIX operating system is the focal point for all

peripheral device I/0 processing. This chapter is a dis-

cussion of how UNIX processes user I/O requests and peripheral

device interrupts. Emphasis is placed on character oriented

peripheral devices. This will help the reader to understand

how UNIX deals with the VG graphics device.

This chapter is divided into three sections. The first

presents a high level discussion of the flow of control during

I/O processing. This is intended to orient the reader to the

overall role of the UNIX operating system in peripheral device

I/O processing. The next section describes how user program

I/O requests are processed. The last section describes how

peripheral device interrupts are processed.

Flow of Control During I/O Processing

UNIX controls the processing of all user I/O requests and

all peripheral device interrupts. The block diagram in

Figure 4 illustrates the overall flow of control during I/O

processing. When a user program requests I/O on a peripheral

device, control is transfered to UNIX. First, UNIX executes

the device independent routines needed for the I/O request,

then it determines which device driver routine to invoke for

the required device dependent processing. Next, the appro-

priate device driver routine is called. It performs the

requested I/O function then returns control to UNIX. UNIX

23

User Program 1

UNIX 2

Peripheral IDevice Driver]

Device Routines 3

Fig 4. Flow of Control During I/O Processing

'finishes processing the I/0 request then returns control to

the user program. In terms of the components of Figure 4, the

typical flow of control for processing a user I/O request is

1,2,3,2,1.

When a peripheral device signals an interrupt to the PDPll

processor, control is transfered to the interrupt vector in

UNIX. The interrupt vector first transfers control to the UNIX

9ssembly language interrupt handler which performs device

independent interrupt processing. Next, the device dependent

interrupt handler, which is part of the device driver software,

is invoked. The device dependent interrupt handler processes

the interrupt then returns control to UNIX. UNIX returns con-

24

/ User Program

User Program

Ca I/O System

I Call.
I System Trap Mechanism

UNIX Trap
Handler

Routines
UNIX System-Call Switch

SUNi 1/0 Table

S\\ System Call
7 Handlers

_Device Switch Tables

evice iDevice Dri
Routines Routines

Fig 5. I/O Processing Routines and
Control Transfer Mechanisms

trol to whoever had it at the time the interrupt occurred.

In terms of Figure 4, the flow of control for processing a

peripheral device interrupt is 4,2,3,2.

Processing User Program I/O Requests

The portion of Figure 4 dealing strictly with processing

user I/O requests is expanded in Figure 5 to show more detail.

This figure illustrates the groups of routines called to

process an I/O request and identifies the mechanisms used to

transfer control between each group of routines. Control is

transfered from the I/O system call to the UNIX trap handler

routines via the system trap mechanism; from.the UNIX trap

handler routines to the UNIX I/0 system call handler routines

25

via the system-call switch table; and from the UNIX I/0

system call handler routines to the device driver routines

via the device switch tables. The remainder of this section

describes each group of routines and each switch mechanism

starting with the user program and ending with the device

switch tables. Much of this information is found in Lions'

commentary on version six of the UNIX operating system

(Ref 10:Chapters 9, 10, 11, 12, 15, 18, and 19). However,

due to differences between UNIX versions six and seven some

of the information presented here was obtained directly from

the UNIX version seven source code. When this is the case,

the appropriate UNIX version seven source file is referenced.

The device driver routines are not described in detail

here. Chapter six is devoted to a detailed description of the

VG device driver routines.

The User Program and I/O System Calls. A user program

requests peripheral device I/0 via the I/O system calls

open(2), close(2), read(2), write(2), stty, and gtty (see

ioctl(2) for stty and gtty). These I/O system calls each com-

pile to a trap instruction followed by the call's input

parameters listed in the order that they were specified in the

* Icall. For example, the system call

26

readCfildes, buffer, mode)

compiles to

trap 3
fildes
buffer
mode

The low order byte of the trap instruction is an integer

system-call identifier which uniquely identifies which system

call caused the trap CRef 10:10-2). In the example above,

the number 3 represent, the system call identifier for a "read"

system call. Later, the system call identifier is used as

an index into the system-call switch table to fetch the

address of the appropriate system-call handler routine.

The System Trap Mechanism. Traps occur as the result

of events internal to the CPU (Ref 10:9-3). Several different

classes of system events cause the CPU to trap. Some of the

different classes are bus errors, illegal instructions,

power failure, execution of a system call trap instruction,

etc. (Ref 10:9-3). A trap vector exists for each different

class of events. All of the trap vectors are defined in the

source file /sys/conf/l.s. The version of this file used

when the VG graphics device is configured on the system,

/sys/conf/l.s.vg, is listed in Appendix B.

When a system event causes a trap to occur, the CPU

immediately transfers control to the associated trap vector.

This is the first step for processing the trap. The trap

vector associated with system calls is illustrated in

27

Execution of a
System Call 4 Language TrapTrap |C Handler B

36 NewPS

Fig 6. System-Call Trap Vector

Figure 6. This trap vector begins at location 34 (octal) of

low core (Ref 10:10-3). Initially, location 34 contains the

assembly language "start" routine (see line 31, Appendix B).

This is used when booting up the system, then location 34 is

overlayed with the address of the assembly language trap

routine. Location 36 contains the new processor status (PS)

value to be used while handling the trap.

When the CPU executes a system call trap instruction,

it immediately loads the program counter (PC) and the pro-

cessor status (PS) word with new values taken from vector

locations 34 and 36 respectively (Ref 10:10-3). The old PC

and PS are automatically saved on top of the system stack.

28

The old PC value is pointing at the first word after the

trap instruction, i.e., the first system call input parameter.

Control is now transferred to the new address held in the PC,

i.e., the address of the UNIX assembly language trap routine

(Ref 10:10-3).

UNIX Trap Handler Routines. The UNIX trap handler

routines consist of the assembly language trap routine located

in source file /sys/conf/mchi.s and the C language trap routine

located in source file /sys/sys/trap.c.

When the assembler trap routine gets control, it first

saves the new PS on top of the system stack. Lions states,

"it is important to save the PS as soon as possible, before

it can be changed, since it contains information defining the

type of trap that occurred" (Ref 10:10-3). Next, the assembler

trap routine saves important system registers on top of the

stack so that they may be restored after the trap is processed.

Finally, the C language trap routine is called.

First, the C language trap routine processes the parameters

specified in the I/O system call. These parameters are fetched

from the user program string in the following ways (Ref 10:12-2):

1. via the special register rO;
2. as a set of words embedded in the program

string following the "trap" instruction;
3. as a set of words in the program's data area.

The open(2) system call parameters are passed from the

user program using method 2 above. That is, the two para-

meters specified in the open(2) call are picked up from the

2

.-, 29

program string following the trap instruction. This is

accomplished using the old PC value (fetched from the system

stack) which is pointing at the parameter list. The para-

meters for the other five I/0 calls are passed using a com-

bination of methods 1 and 2 above. The first parameter of

these five calls is placed in special register rO when the

trap instruction is executed. The remaining parameters are

picked up from the program string following the trap instruc-

tion.

The C language trap routine fetches all the system call

input parameters by first fetching the unique identifier for

the system call from the low order byte of the trap instruc-

tion (Ref 10:12-2). This integer identifier is used as an

index into the system-call switch tahle (described later) to

retrieve two pieces of information; the total number of

parameters required for the system call and the number of

those parameters that were passed through special registers.

After fetching all the parameters, the C language trap

routine places them in the argument array, u.uarg] , so that

they may be retrieved later by the UNIX i/O system call

handler routines. Depending on which I/O system call is made,

u.u arg[) contains one of the following sets of system call

parameters.

30

-,1,.,.

1. For the open(2) system call:
u.u arg[O]= file pathname;
u.u1arg[i= access mode

2. For the close(2) system call:
u.u arg[O] = file descriptor.

3. For the read(2) and write(2) system calls:
u.u arg[0= file descriptor;
u.u-arg[lj= pointer to a user buffer;
u.u-arg[2]= number of bytes to be read

or written

4. For the stty and gtty system calls:

u.u arg[O]= file descriptor;
u.u-arg[l]= pointer to a user buffer.

After the system call parameters are placed in the u.uarg[]

array, the C language trap handler calls the appropriate

UNIX I/O system call handler routine via the system-call

switch table.

System-Call Switch Table. The system-call switch table

is defined in file /sys/h/sysent.h as an array of structures.

The array is initialized in file /sys/sys/sysent.c. The

following C code declares the array but does not dimension or

initialize it.

1. extern struct sysent {
2. char synarg;
3. char sy nrarg;
4. int (*sycall)();
5. 1 sysent[]:

Lines 1-4 define a structure named sysent which consists of

three elements. The first element, sy_narg, is used to

specify the total number of arguments needed for a particular

system call. The element named synrarg is used to specify

the number of arguments passed through special registers such

31

6c~~ .. ,,Z Z . JR

Sysent Table

index sy narg sy rarg (*sy-call)()

3 3 1 read

4 3 1 write

5 2 0 open

6 1 1 close

31 2 1 stty

32 2 1 gtty

Fig 7. System-Call Switch Table

as rO. The last element, (*sycall)(), is a pointer to a

function that returns an integer value (Ref 7:114-116).

Line five declares an undimensioned array of sysent

structures. The array is also named sysent, which may cause

some confusion. The sysent array is initialized in file

/sys/sys/sysent.c to logically appear as a table with one row

for each system call existing on the system. Figure 7 shows

the table entries for the I/O system calls. Notice that the

three elements of the sysent structure map directly onto each

row of the table, thereby providing a means of retrieving

data from the table. The table is indexed by the system call

identifier obtained from the low order byte of the system call

32

M .- . I Ii i-

I
Snamei open

Devi ce iDriver I

Op en Routine

Fig 8. Routines for Processing an open(2) System Call

trap instruction. The first two columns of the table were used

by the C language trap routine to determine how many parameters

to fetch and how many of them were passed in special registers.

The third column of the table, which contains the addresses of

the I/O system call handlers, is used by the C language trap

handler to call the appropriate I/O system call handler.

I/O System-Call Handler Routines. The I/O system calls

open(2), close(2), read(2), write(2), stty, and gtty cause the

C language trap handler to invoke the I/O system-call handler

routines open, close, read, write, stty, and gtty. Each of

these system-call handler routines is described later.

Open. Figure 8 illustrates the system-call handler

33

routines invoked to process the openC2) system call. The

open routine, located in source file /sys/sys/sys2.c, first

calls the "namei" routine Clocated in /sys/sys/nami.c) to

convert the file pathname Csystem call parameter 1 retrieved

from u.uarg[0o) into a pointer to an i-node. If the file has

not been previously opened then namei makes a copy of the

file's disk i-node in the active i-node table CRef 10:18-3).

This is accomplished via a call to the "iget" routine (Ref

10:18-3). Namei returns a pointer to the active i-node table

entry. Next, open calls the "openl" routine passing it the

pointer to the active i-node. Openl, located in source file

/sys/sys/sys2.c, first checks file access permissions. Next

it makes the appropriate entries in the system open file table

and the user open file table. Finally, openl calls the "openi"

routine. Openi, located in source file /sys/sys/fio.c,

retrieves the special file's device class and device name.

The device class indicates whether to call the driver open

routine via the character device switch table or via the block

device switch table. The major device number, taken from the

high order byte of the device name, determine: which device

driver open routine to invoke via the device switch table.

The appropriate device driver open routine is called with the

minor device number (taken from the low order byte of the

device name) passed as an argument.

3

314

close

closef

closei

Device Driver

Close Routine

Fig 9. Routines for Processing a close(2) System Call

Close. Figure 9 illustrates the routines invoked to

process a close system call. As stated by Lions, "the 'close'

system call is used to sever explicity the connection between

a user program and a file and thus can be regarded as the

inverse of 'open'" CRef 10:18-3).

The Close routine, located in source file /sys/sys/sys2.c,

zeros out the appropriate entry in the open file table,

-a.u-ofile [], by fetching the file descriptor parameter from

u.u arg[0 and using it as an index into the open file table

(Ref 10:18-4). Next, the close routine calls the "closef"

routine. Closef, located in source file /sys/sys/fio.c,

decrements the reference count to the file. If there are no

35

read writel

Sreadi writeil
Device [rvrDevice Driver
Read Routn Write Routine

Fig 10. Routines for Processing the read(2) and
write(2) System Calls

more references to the file then the system open file table

entry is eliminated and the active i-node table entry is copied

back to the i-list stored on disk. This is accomplished via a

call to the Iiput" routine (Ref 10:18-4). Finally, the closef

routine invokes the device driver close routine via the appro-

priate device switch table. The minor device number is passed

as an argument.

Read and Write. The read and write system call handlers

are discussed together because they execute some common code.

Figure 10 illustrates the routines invoked to process the

read(2) and write(2) system calls. The read and write routines,

located in source file /sys/sys/sys2.c, simply call the

36

"rdwr" routine, passing a flag to indicate which routine made

the call CRef 10:18-4).

The rdwr routine, located in source file /sys/sys/rdwr.c,

first checks the special file's access permissions to see if

the read or write system call is permitted on that file. This

is accomplished by using the file descriptor input parameter

to check the special file's access permissions stored in the

special file's active i-node. Next, the rdwr routine loads

u.u base with the address of the user buffer which was speci-

fied as the second input parameter of the system call. Next,

u.u count is loaded with the number of bytes to be transfered,

i.e., the third input parameter of the system call. Next,

rdwr sets up the offset into the user buffer by loading

u.u-offset with the offset value obtained from the special

file's active i-node. Finally, rdwr switches out to either

readi or writei. These two routines are located in source

file /sys/sys/rdwri.c. For character oriented special files,

readi and writei simply switch out to the appropriate device

driver read or write routines via the character device switch

table.

Stty and Gtty. Figure 11 illustrates the routines called

to process a stty or a gtty system call. The stty and gtty

routines, located in source file /sys/dev/tty.c, each alter

the u.u arg[I array then call the "ioctl" routine. The

u.u_arg[J array is altered because the ioctl routine expects

a flag in u.uarg[J indicating whether the stty routine or

the gtty routine made the call. Both stty and gtty alter the

37

L.

stty gtty

ioctli

Device Driver
loctl Routine

Fig 11. Routines for Processing the stty and
gtty System Calls

U.u arg[] array in the same way. The data in u.uarg[l] is

moved to u.u-arg[2J, then the appropriate identification flag

is placed in u.u arg[l). After this has been accomplished,

the ioctl routine is invoked. This routine is located in

source file /sys/dev/tty.c.

For character oriented special files, ioctl simply calls

the appropriate device driver ioctl routine via the character

device switch table, passing both the minor device number and

the identification flag retrieved from u.u-arg[I]. The

identification flag lets the device driver ioctl routine know

whether the call is a stty or gtty call.

Device Switch Tables. The UNIX I/0 handler routines call

38

device driver routines via the system's device switch tables.

Two such tables exist; the block device switch table Cbdevsw)

for block oriented devices and the character device switch

table (cdevsw) for character oriented devices. In principle,

the two tables are used in the same way. The cdevsw table

is describe here.

The cdevsw table is declared in system source file

/sys/h/conf.h and initialized in file /sys/conf/c.c. The

following C code declares the table but does not dimension or

initialize it.

1. extern struct cdevsw {
2. int (*d open)();
3. int (*d-close));
4. int (*d-read)();
5. int C*d write)();
6. int (*d-ioctl)();
7. int (*d-stop)();
8. struct Tty *d_ttys;
9. } cdevsw [] ;

Lines 1-8 define a structure named cdevsw. The structure con-

sists of seven elements (lines 2-8). Each of the first six

elements is a pointer to a function that returns an integer

value (Ref 7:114-I16). The last element is a pointer to a tty

structure.

Line 9 declares an undimensioned array of cdevsw structures

tRef 7:124). The array is named cdevsw, which may cause some

confusion because each of the structures making up the array

is also named cdevsw. Since the array is not dimensioned, no

storage is allocated at this point.

The initialization of array cdevsw is defined in file

39 _ _ _

/sys/conf/c.c. The version of this file used when the VG

graphics device is configured on the system, /sys/conf/c.c.vg,

is included as Appendix C. The array is initialized to

logically look like a table with 23 rows (0-22) of seven

elements each (see lines 53-79, Appendix C). Each row in the

table is reserved for a different character oriented peripheral

device. The first six elements in each row are the names of

the device driver routines for a particular device, while the

seventh element is a pointer to a tty structure associated with

that particular device.

The seven elements of the cdevsw structure map directly

onto the seven element of each row of the cdevsw table. In

this way each row element may be referenced by specifying the

corresponding name from the cdevsw structure. For example,

the code

cdevsw[22].dopen

is a reference to the first element of row 22 in the character

device switch table.

It has already been pointed out that the i-node for each

special file contains a device class and device name. It has

also been pointed out that the device class and major device

number are used to determine which device driver routine to

call. This concept is explained in detail here. The device

class is either character or block. This indicates which

switch table to use. The major device number is used as a row

index into the appropriate table. For example, the i-node for

40

* '. .-.., - .

a special file associated with the VG graphics device contains

a device class "c" Cfor character oriented) and a major device

number 22. This information tells the system that the names

of the VG driver routines are found in row 22 of the cdevsw

table. Row 22 contains the entries vgopen, vgclose, vgread,

vgwrite, vgioctl, nulldev, and 0 (see line 77, Appendix C).

Nulldev indicates that there is no driver routine for the

d_stop function, while the zero entry indicates that no tty

structure is needed for the VG graphics device.

The following C language statement is a general example

of how the UNIX I/0 handler routines call device driver routines

via the cdevsw table.

C*cdevsw[maj].d close)(dev);

In this example, assume "maj" contains the major device number

and "dev" contains the minor device number obtained from a

special file's active i-node. The statement evaluates to a

function call on the device driver routine whose address

resides in the d close element of row maj in the cdevsw table.

The minor device number in dev is passea as an argument.

The contents of the first set of parenthesis, *cdevsw

f maJl.d close, evaluates to the address of a devicedriver routine

The "*" is the C language indirection operator (Ref 7:89) and

the "." is the structure member operator (Ref 7:120). Logically,

*cdevsw[maJ].d_close means get the value stored in the

d_close element of row maj of the cdevsw table. For maj = 22,

the code would return the address of the vg_close routine.

I41

Once this address is fetched from cdevsw table, the vgclose

routine is called with input parameter dev.

Summary. This section began with a very high level flow

chart of how a user program I/O request is processed. Through-

out this- section the flow chart was expanded to show more

detail. All of the routines discussed in this section are

brought together in the form of a structure chart displayed

in Figure 12. This chart represents all the main routines

called to process user I/0 system calls. Levels zero and

one represent user level routines, levels two and three the

trap handler routines, levels four through six the I/O system

call handler routines, and level seven the generic device

driver routines. The next section describes how peripheral

device interrupts are processed by UNIX.

Processing Peripheral Device Interrupts

The high level flow chart for processing interrupts is

expanded in Figure 13 to show more detail. This figure illu-

strates the types of routines called to process an interrupt

and identifies the mechanism used to transfer control between

each group of routines. An interrupt generated by the

occurrence of an event on a periperal device causes a transfer

of control to the UNIX interrupt handler routine via the

device's interrupt vector. Control is transfered from the

UNIX interrupt handler to the appropriate driver interrupt

handler via the same interrupt vector.

The remainder of this section describes the peripheral

42

C)

00

0

(D) 4) 4

Cl13

04

at)

a) P r

a) p p

Cu c
W 0

C(D

a) bO=

ILI4

0 0 0) -0 00 IA- Ai

0 143

Peripheral .. Peripheral
Device Device Event

I UNIX Assembly Perpheravice
UNIX Language InteDv

_ _ Handler / Interrupt
rutHnde / Vector

/

/

/
Routines v Interrupt

Handler

Fig 13. Interrupt Processing Routines and
Control Transfer Mechanism

device events, the device interrupt vector, and the UNIX

interrupt handler routine. The VG's device driver interrupt

handler, vgint, is described in detail in chapter six.

Peripheral Device Events. As opposed to system traps,

interrupts result from events external to the CPU. External

peripheral device events generate interrupts to get the atten-

tion of the CPU. The CPU is deverted from whatever it was

aoing and redirected to execute another program to process

the event that caused the interrupt (Ref 10:9-1).

A number of different events occuring on a peripheral

device may generate an interrupt. Some typical ones are input,

output, device errors, etc. The types of events that generate

44

interrupts are dependent on the type of peripheral device.

Some peripheral devices may not have interrupt generating

capability, while others may only support a few types of

interrupts. Some devices support a wide range of interrupt

generating events and even allow the user to "turn on" and

"turn off" the interrupts for selected events (Ref 17:2-82

to 2-85).

The System Interrupt Mechanism. The system interrupt

mechanism allows external devices to interrupt the CPU. Each

device has an interrupt vector associated with it which is

used to transfer control during interrupt processing.

Peripheral device interrupts are assigned a priority

level 4, 5, 6, or 7. This priority is determined by the hard-

ware CRef 10:9-2). The processor also has a priority level

associated with it from 0 to 7. This priority is carried in

the current processor status CPS) word, bits 7 to 5 (Ref 10:9-2).

When a peripheral device generates an interrupt, the

interrupt is inhibited as long as the processor priority is

greater than or equal to the interrupt priority (Ref 10:9-2).

When the processor priority becomes less than the interrupt

priority, the interrupt is recognized. The processor then

goes to the appropriate interrupt vector location to fetch

n ew PS and PC values.

Different peripheral devices may have different interrupt

vector locations. The location for a particular device is

determined by hard wiring (Ref 10:9-2). The interrupt vectors

on the PDPII/60 are located in low core and are defined in

45

UNIX
Assembly
Language
nterrupt

Call UNIY Handler

Interrupt 37 Interrupt
Generated Handler

by VG Call VG~~Display [
System 37 InterrupSytmHandler vgint

Fig 14. Interrupt Vector for VG Display System

the source file /sys/conf/l.s. A complete listing of the

version of this file used for the VG graphics device,

/sys/conf/l.s.vg, is given in Appendix B. For the VG graphics

device, the new PC and PS values are loaded from octal loca-

tions 374 and 376 respectively (see lines 60-61, Appendix B).

The flow chart depicted in Figure 14 shows the transfer

of control during interrupt processing. The VG graphic device's

Interrupt vector is used as an example. The processor loads

new PC and PS values from the hard-wired vector location 374

and the word following that location, 376. After this step,

the PC is pointing at a pair of interrupt handler calls (see

line 84, Appendix B). The first is executed calling the UNIX

46

I____z-- 7:-:. . . '''" - =

device independent interrupt handler. When this routine is

finished, the device dependent interrupt handler, vgint, which

is part of the device driver software, is invoked.

The UNIX Interrupt Handler Routine. The UNIX interrupt

handler consists of some of the same assembly language code

executed to process system traps. This code is located in

file /sys/conf/mch i.s. For processing traps, the entry point

to the code is label "trap". For processing interrupts, the

entry point is label "call" (Ref 10:9-3). As with traps, the

assembly language code first saves appropriate information on

the system stack to be restored later. The device driver

interrupt handler is then called to process the device depen-

dent aspects of the interrupt.

Summary

This chapter described how the UNIX version seven operating

system processes both user program requests for peripheral

device I/O and peripheral device interrupts. This information

is useful when developing driver software that runs under UNIX

version seven.

Now that peripheral device I/O has been described, the next

chapter discusses the VG 3404 peripheral device.

j 4.

4 " " k

IV The Vector General 3404 Graphics Display System

Overall Description

The Vector General 3404 graphics device is a sophisticated

graphics display system made up of the following major func-

tional components (Ref 17:1-1).

1. Computer Interface
2. Graphic Processor Unit (GPU)
3. Refresh Buffer Unit CRBU)
4. Display Control Unit (DCU)
5. Vector Generator Unit (VGU)
6. Font Generator Unit (FGU)
7. Monitor Control Unit (MCU)
8. Display Monitor(s)
9. Display Input Device(s)

10. Options

Figure 15, derived from the Programming Concepts Manual

(Ref 17:1-3), is a block diagram depicting the organization

of the major functional components.

A user program builds a display list in the host computer's

memory. This list is made up of instructions to be executed by

the display system's Graphic Processor Unit (GPU). A complete

list of the GPU instruction set is given in the System Reference

Manual (Ref 18:3-7). The manual also provides a detailed des-

cription of each instruction (Ref 18:3-8 through 3-56).

After the display list has been built, the user program

signals the GPU to start a one-time transfer of the display

list from computer memory to the GPU via the computer inter-

face. The GPU interprets the instructions in the display list

and outputs a new list of elementary instructions called a

* 48

4) 1
0 4

0

.4-

0

43J

14 0 0

0 - 44)4-1 4- 02
V0:00 4)r.-Pl. 02a P

C3

r) 43;d-H
4-

'd-

IL

V-4 bOcr
t-44

0 ~

4d C. CD4-c44)4-'3 d J
U- 4-4 H LI+41

*HrI U X 10 0) O W-rto 4 4) p d b

[4 0- 0. H.
0 -)+-00)-

449

refresh list. The refresh list is stored in the display

system's Refresh Buffer Unit CRBU). The refresh list is

repeatedly sent from the RBU to the Display Control Unit (DCU).

The DCU interprets the refresh list instructions and causes

the Vector Generator Unit (VGU) to draw lines, the Font

Generator Unit (FGU) to draw characters, and the Monitor

Control Unit CMCU) to control the CRT (Ref 17:1-1).

The remainder of this chapter is divided into two sections.

The first section is a brief description of each of the dis-

play system's major functional components. This is followed

by a discussion of the display system registers accessable for

command, control, and communication purposes. Emphasis is

placed on a description of the registers dealing with the

display system input devices.

Functional Description of Major Display System Components

The display system's major functional components are des-

cribed in both the Programming Concepts Manual and the System

Reference Manual (Refs 17:1-2 to 1-7 and 18:2-2 to 2-5). Each

major component is briefly described here.

Computer/Display System Interface. All communication

between the host computer and the display system takes place

via a hardware interface. The next chapter is devoted to a

detailed description of the hardware interface between the

PDPll and the VG display system.

Graphic Processor Unit. The GPU is a high-speed special-

purpose processor designed to handle complex algorithms such

50

as transformations and other image manipulations. The GPU's

instruction set consists of 47 basic instructions. User pro-

grams build display lists which consist of instructions from

the GPU's instruction set along with any necessary data. The

GPU fetches the user display list and associated data from the

host computer's memory via a direct memory access (DMA)

channel provided by the host computer/VG3404 hardware inter-

face. The GPU processes the display list and outputs a

refresh list to the RBU. Interaction between the GPU and RBU

permits element selection and picking (Refs 17:1-2 and 18:2-2).

All communication to and from the GPU takes place over the

VG's Graphic Processor (GP) bus.

Refresh Buffer Unit. The RBU is made up of random access

memory (RAM) and the control logic needed for reading and

writing the RBU. The RBU may be continuously updated by the

GPU over the GP bus.

The DCU accesses the RBU to update the displayed picture

on the CRT screen. This takes place during each refresh

cycle and does not interfere with the GPU updates to the RBU.

The RBU contains the necessary control logic to operate

in double buffer mode. In double buffer mode, data may be

moved from one buffer to the next when reorganizing the dis-

play refresh list for editing purposes.

Display Control Unit. The DCU fetches the refresh list

from the RBU via the VG's MD bus. It processes the refresh

list instructions and sends the appropriate refresh data to

the VGU, FGU, and MCU. It also generates the control signals

51

that cause the VGU, FGU, and MCU to display the refresh data.

All of the communication between the DCU and the VGU, FGU,

and MCU takes place over the DCU bus.

Vector Generator Unit. As stated in the Programming

Concepts manual, "the VGU is a high speed vector generator which

provides the deflection signals required to draw a line from

one point to another on the face of the CRT" (Ref 17:1-5).

The VGU operates on the x-y coordinate data it receives from

the DCU via the DCU bus. It has the capability of generating

curved lines on the display using a smoothing technique. It

also performs the spacing between character positions as the

FGU displays text.

Font Generator Unit. The FGU receives character codes,

scaling, font, and rotation parameters from the DCU via the

DCU bus. The character codes used are from the set of 96

ASCII characters.

The FGU uses a programmed ROM in conjunction with "stroke"

character draws to display the characters on the screen

(Ref 18:2-4).

Monitor Control Unit. The MCU selects the desired CRT

for display and provides the required unblanking and intensity

signals for the monitor video channel.

Display Monitors. The VG 3404 will support up to six

CRT monitors per MCU. Optionally, up to eight CRTs can be

supported (REf 17:1-6). AFIT only has one monitor at present.

Display System Input Devices. At present, AFIT's VG

display system does not support the joystick, control dials,

52

nor light pen input devices. Nor does it have any remote

input devices. The basic local input devices supported on

AFIT's system are the alphanumeric keyboard, function switch

box, and data tablet. These input devices all generate

interrupts to the host CPU when they require service.

Options. The options available on the VG 3404 are listed

in the Programming Concepts Manual (Ref 17:1-7). They include

such things as additional input devices, additional RBU/DCU

sets, pick facility, color monitors, etc. Aside from the

input devices already mentioned, AFIT's display system has no

other options.

Display System Registers

The VG contains many registers that can be read and

written by the device driver and user programs to control

display processing and to pass data and status information

back and forth between the host computer and the display

system. Each of these registers has a unique address in the

display system. Each register is associated with one of the

VG's major functional units. The registers are divided into

two categories; (1) GPU registers and (2) hardware and device

registers. A complete list of GPU registers, along with a

description of each, is given in the System Reference Manual

(Ref 18:3-57 through 3-70). The hardware and device registers

are listed and described in both the System Reference Manual

and Volume one of the Technical Manual (Refs 18:5-1 through

5-20 and 20:2-1 through 2-23). The purpose here is not to

S.. 53

describe all of these registers. Users can learn the use of

each register by studying the manuals. At this point, it

suffices to say that the UNIX operating system and device

driver software provide the capability for user programs to

read and write any of the display system registers via the

stty and gtty system calls. This capability is described

in detail in chapter six.

The device driver software accesses some VG registers

without being requested to do so by a user program. In

particular, the device driver interrupt handler accesses the

registers associated with the VG's input devices during

interrupt processing. These registers are described in the

Programming Concepts Manual CRef 17:2-82 to 2-85). Only

the input devices on AFIT's system are described here.

Data Tablet Registers. Three registers are associated

with the data tablet. They are illustrated in Figure 16a.

The display system addresses for these three registers are

1600-1602 (Ref 18:Appendix C).

The first two registers, DTX and DTY, hold the X and Y

stylus positions respectively. These values are stored in

the form of signed twos complement integers in the leftmost

ten bits of the registers. These values are updated con-

stantly as the stylus is moved around the data tablet.

The third register, DTS, holds control and status in-

formation. The XOS and YOS bits indicate that the stylus

is out of bounds on the data tablet surface in the X and/or

Y directions respectively. The PNN bit indicates the stylus

54

DTX±

DTYI±
DTS XOSI YOJ PNNIPRS EPN_

(a)

FSLO SOO-S15(READ), LOO-L15(WRITE)

FSLl1 s16-S31(BEAD), L16-L3l(WRITE)

FSKC SDI 1 , SDO LDl TMl LDO IEO

(b)

KB KDV IKIE DATA

Fig 16. Input Device Registers

is-within the "near'" zone above the tablet. The PRS bit in-

dicates the stylus switch is depressed. The TEN bit is set

to enable interrupts generated by a change in the XOS, YOS,

* PNN, or PSS bits. It is set by the device driver program

-~ when a user program requests use off the VG data tablet.

Function Switch Box Registers. Three registers are

associated with the function switch box. They are depicted

in Figure 16b. Their addresses are 160I4-1606 (Ref 18:Appendix

C).

55

The sixteen bits of the first register (FSLO) correspond

to the function switches SO0-S15 and their respective lamps,

LOO-L15. The sixteen bits of the second register CPSL1)

correspond to function switches S16-S31 and their respective

lamps, L16-L31. The meaning of these two registers depends on

whether they are being read or written by the device driver

software. When reading, these two registers provide input

data from the 32 function switches S00-S31. Every function

switch depressed before the read causes the corresponding

register bit to be set (Ref 17:2-83). When writing to these

registers, all bits set to one turn the corresponding lamps

(LOO-L31) on.

The third register, FSKC, is for control and status. The

IEO and IE bits enable interrupts from the two switch groupings,

SOO-S15 and S16-S31 respectively. These bits are set by the

device -oftware when a program requests use of the function

switches. SDO and SDl are sense bits which indicate a switch

is latched in the SOO-S15 and S16-S31 groups respectively.

The LDO and LD1 bits can be set to cause latching of all

switches depressed in the S00-S15 and S16-S31 groups respec-

tively. The latched data is cleared from FSLO and FSLl regis-

ters each time they are read by the device driver.

Alphanumeric Keyboard Register. One register is associated

with the alphanumeric keyboard input device. It is illustrated

in Figure 16c. The display system address for this register

is 1607 (Ref 18:Appendix C).

The eight bit DATA field holds the ASCII code of the key

56

• , - a, .. . - ..

depressed. The KIE bit enables interrupts for the keyboard.

This bit is set by the device driver when a user program

requests use of the keyboard. The KDV bit is set by the dis-

play system each time a key stroke has been latched in the

data field. Reading the data field clears the KDV bit and

allows another keystroke entry (Ref 17:2-84).

Summary

This chapter presented a functional description of the

major components of the display system (except for the

computer/VG3404 hardware interface component). A detailed

description of the display system registers associated with

AFIT's VG input devices was also given. The next chapter

describes the PDPll/VG3404 hardware interface in detail.

57

.7-2, x 0

V The PDPll/VG3404 Hardware Interface

Communication between the PDP11/60 computer and the

Vector General 3404 graphics display system is established

via the DE41 hardware interface (Ref 19). As stated in the

DE41 reference manual, "this unit interfaces between the

*Unibus of any PDP11/60 computer and the General Purpose 10

Bus of the NPL display controller" (Ref 19:3).

The interface provides four sixteen bit registers that

can be directly addressed by the VG device driver running

in the host computer. These are the Status, Control, Data,

and Base Address registers. Using these four registers, the

interface recognizes four input instructions and four output

instructions. These eight interface I/O instructions, to-

gether with the four addressable interface registers, estab-

lish three channels of communication between the host com-

puter and the VG display system. These three channels are

the direct memory access channel (DMA), the interrupt channel

(INT), and the programmed I/0 channel (PIO). These three

channels are illustrated in Figure 17 taken from the Pro-

gramming Concepts Manual (Ref 17:2-2).

First, a detailed description of how to access the four

interface registers from the device driver program in the

host computer will be given. This is followed by an ex-

planation of the use of the interface's eight I/O instructions.

Finally, communication on the DMA, INT, and PIO channels is

descrlbed.

58

DMA

INT

PIO

Computer Display System

Fig 17. Interface Communication Channels

Accessing the Interface Registers

The interface's Status, Control, Data, and Base Address

registers can be directly addressed by the VG device driver

software executing in the host computer. These special

registers are assigned physical addresses 0763400, 0763402,

0763404, and 0763406 from the highest page of the host com-

puter's core memory. This is done because the highest page

of core memory (addresses 0760000 to 0777777) is reserved for

special registers associated with the processor and the

peripheral devices (Ref 10:2-5).

Addresses from the highest page of the virtual address

space (0160000 to 0177777) are mapped directly to the

59

addresses of the highest page of the physical address space

(Ref 10:2-5). Therefore, the interface's Status, Control,

Data, and Base Address registers have virtual addresses

0163400, 0163402, 0163404, and 0163406 respectively. These

virtual addresses are used in the device driver software to

access the interface registers. The system takes care of

mapping these sixteen bit virtual addresses to their eighteen

bit physical addresses by adding in a base address obtained

from the appropriate page register. Address mapping is

described in detail in the section on the DMA channel.

The interface registers can be easily accessed from the

device driver software. First, it is helpfull to associate

meaningful names with the register addresses. This is

accomplished in the C language with the "#define" macro

substitution (Ref 7:86). The following C code was placed at

the beginning of the device driver to associate names with

the interface register addresses.

1. #define VG STAT 0163400
2. #define VG CONT 0163402
3. #define VG DATA 0163404
4. #define VG-BAR 0163406

These statements tell the macro preprocessor, which is not

part of the compiler proper, to replace all subsequent

occurrences of the names VGSTAT, VGCONT, VGDATA, and

VG BAR with character strings 0163400, 0163402, 0163404, and

0163406 respectively.

VGSTAT, VGCONT, VGDATA, and VGBAR are simply pointer

60

values to the interface's Status, Control, Data and Base

Address registers. In order to access the contents of the

interface registers, the pointer values to the registers must

be dereferenced (Ref 10:5-5). That is, the contents of the

referenced location are desired instead of the reference

itself. This is accomplished in the C programming language

by creating a dummy structure consisting of one element,

named "reg" (abbreviation for register), which is declared

as type integer. The code

struct { int reg; };

is used in the device driver program (see line 99, Appendix

D) to describe the dummy structure. This code does not

cause storage to be allocated, it simply describes a template

or the shape of a structure (Ref 17:120). A reference to the

"reg" element of this template can be made using the struc-

ture pointer operator "->" (Ref 7:122).

The contents of the interface registers are accessed by

specifying the appropriate pointer value (VGSTAT, VGCONT,

VGDATA, or VGBAR) connected to the "reg" element of the

dummy structure by the "->" operator. To the C compiler,

the code "VGSTAT->reg" means that 016 3 400 is the beginning

address of an occurrence of the dummy structure. Since "reg"

is the first and only element of the structure, its address

is also 0163400. Therefore, the code "VGSTAT->reg" simply

stands for the contents of address 0163400, i.e., the con-

tents of the interface's Status register. The codes

61

"VGSTAT->reg", "VGCONT->reg", "VGDATA->reg", and

"VGBAR->reg" cause four separate occurrences of the dummy

structure template to be overlayed on virtual memory at vir-

tual addresses 0163400, 0163402, 0163404, and 0163406. The

result of this code is represented pictorially in Figure 18.

The four interface registers are all read and written

in the same way. For example, the C code statement

VGDATA->reg = expression;

is used to load the interface's Data register. The word

"expression" on the right side of the assignment operator

can be a constant, variable name, function call, or any other

legal C language expression. To read the same register the

code

data VGDATA->reg;

is used; where "data" stands for some variable name.

The Interface's Eight I/O Instructions

Using the four addressable registers described above,

the interface recognizes four input instructions and four

output instructions (Ref 19:5). These are Status In and

Status Out, Control In and Control Out, Programmed In and

Programmed Out, and BAR In and BAR Out. The device driver

executes these instructions by reading and writing the four

addressable interface registers. All of the commands are

executed over the interface's PIO channel. However, many of

62

Template Created by
the Dummy Structure

reg

Virtual Memory
(organized by words)
Overlayed with Four
Occurences of the
Dummy Structure Template

o163376 ________ ___

VGSTAT 01631400 reg

VGCONT o163402 reg

VGDATA Ql63404 reg

VGBAR 01631406 reg

o1631410

01631412 ___________

* Fig 18. Using a Dummy Structure to Access the
Contents of the Interface Registers

63

74

these instructions affect communication on the DMA and INT

channels.

At this point it is worthwhile to mention that the four

input instructions send input from the interface to the

device driver, while the four output instructions send out-

put to the interface from the device driver. In other words,

the interface sends input to the device driver program and

receives output from the device driver program.

A detailed description of the interface's eight I/O

instructions can be found in the DE41 reference manual

(Ref 19:5-7). A brief description of the purpose of each of

the eight instructions is given here.

The Strtus In instruction (Ref 19:5) is used to obtain

the ID of ti. ast unit (within the VG display system) that

interrupted the PDPll processor. The Status Out instruction

is used to restore the contents of the interface's Input

Buffer Register (INR) after an interrupt has been processed.

Depending on which bits are set, the Control In and

Control Out instructions (Ref 19:6) accomplish different

tasks. Control In can be used to test whether the interface

power is on, whether an input operation requested by the

device driver program has been completed, or whether an

.output operation ixitiated by the device program has been

completed. The Control Out instruction can be used to ini-

tialize the interface, enable new interrupt requests from the

VG display system, acknowledge interrupts received from the

VG display system, specify the address of a VG register so

64.j.i

that it may be read or written, or request input from a

VG register.

The Programmed In instruction (Ref 19:7) reads the con-

tents of the interface's Input Buffer Register (INR). Pro-

grammed Out writes data to the VG register whose address was

specified by the last Control Out instruction with the

Register Change (RC) bit set.

The BAR In instruction (Ref 19:7) is used to read the

interface's Base Address Register. BAR Out (Ref 19:7) is

used to load the interface's Base Address Register. The

function of the interface's Base Address Register is des-

cribed in detail in the section on the DMA Channel.

Channel Communication

As mentioned earlier, the eight interface I/O instruc-

tions, together with the four addressable interface registers,

are used to establish three channels of communication (DMA,

INT, and PIO) between the host computer and the VG graphics

device. The block diagram in Figure 19 illustrates which

system components use each of the three channels. Communi-

cation may occur concurrently on all three of these channels

(Ref 17:2-2). The purpose of this section is to describe

what type of information flows over each channel, and how

that flow of information is controlled.

The DMA Channel. The DMA channel is described in the

Programming Concepts Manual (Ref 17:2-3). Primarily, the

channel is used to pass the user defined display list from

65

6&L

-rfl 4

-: 0 E-4

4)-

(D 0

0 E-4 -4

Cd.

12 d 0 a)
(U -H

2>
a) PS

.4 4.66

the host computer to the GPU in the display system. As the

GPU processes the display list, it may fetch and/or store

data in the host computer memory as required by the display

list instructions. This data transfer also takes place over

the DMA channel (Ref 17:2-3).

Memory addresses for DMA transfer are formed in the

hardware interface by mapping 16 bit virtual addresses to

18 bit physical addresses. This is accomplished by adding

the contents of the interface's Memory Address Register (MAR)

to its Base Address Register (BAR). This address mapping is

described in detail in the DE41 interface manual (Ref 19:13).

Before address mapping can take place, the BAR must be

loaded with the proper base address. This address is ob-

tained from a segmentation register in the host computer.

The segmentation register used depends on whether-the UNIX

operating system has assigned the user program a sharable

text segmen or not.

If the user program has not been assigned a sharable

text segment then the space allocated for the program to run

is guaranteed to be mapped into contiguous memory and to'1r
begin at the zeroth page of the user's virtual address space.

In this case the value loaded into the BAR is taken from

*the first User Instruction Space Address Register (UISA)

located at virtual address 0177640 on the PDPll/60 (Ref 11:3).

If the user program has been assigned a sharable text

segment, then the user space might not be mapped onto con-

tiguous memory. In this case, the pointer to the user's

67

text segment, u.u_procp->textp (see line 452, Appendix D),

is used to calculate which segmentation register to use for

loading the interface's BAR.

The VG device driver program checks for the two cases

described above, then loads the BAR from the appropriate

segmentation register with the BAR Out instruction. The

code that accomplishes this task is discussed in the next

chapter.

Once the BAR has been loaded, memory reads and writes

can take place over the DMA channel. The following sequence

of steps occur during a memory read (Ref 19:9).

1. The GPU requests use of the GP bus for a delayed
data transfer.

2. Once the request is granted, the GPU sends a
virtual memory address over the GP bus to the
hardware interface's MAR.

3. The interface maps the 16 bit virtual address
stored in the MAR to an 18 bit physical address.
The base address stored in the interface's BAR
is used during address mapping.

4. The hardware interface uses the 18 bit physical
address to access PDPll memory (via the UNIBUS)
for the requested data. The retrieved data is
placed in the interface's Input Buffer Register
(INR).

5. Next, the interface requests the GP bus for a
second data transfer. When the request is
granted, the data is transferred from the inter-
face's INR to the GPU.

Steps 1, 2, and 3 are the same for a memory write

operation. Steps 4 and 5 are changed. The changes are

listed below.

68

4. The interface reads the data from the
requesting unit and places it in its INR.
This is a separate GP bus transfer.

5. The interface uses the 18 bit physical address
formed in step 3 to write the data from its INR
to PDP11 memory (via the PDPlI UNIBUS).

Information flow on the DMA channel is controlled by

interface I/O commands executed on the PIO channel, the con-

tent of the user defined display list, and the occurence of

events within the display system. Commands sent over the

PIO Channel may start and stop the transfer of the user

defined display list from computer memory to the GPU. In-

structions within the display list may alter the normal

sequential processing from computer memory. The occurrence

of a display system event, such as an interrupt from a dis-

play system input device, temporarily halts display list

processing (Ref 17:2-3).

The Interrupt Channel. The Interrupt (INT) channel is

described in the Programming Concepts Manual (Ref 17:2-3 to

2-4). The channel is used to signal interrupts to the PDPII

processor from the VG display system. A number of different

events on the display system may generate interrupts. For

example, keyboard, function switch, and data tablet inputs

are all display system events that generate interrupts to

the PDPll processor. An interrupt is processed by the

following steps (Ref 19:10-11).

1. A sub-unit of the VG display system signals an
interrupt to the interface.

69

2. In accordance with priorities, the interface grants
the GP bus to the requesting unit.

3. The requesting unit transfers a 6-bit interrupt
identification to the interface's interrupt Iden-
tification Register (IDR). Subsequent interrupt
requests are not honored by the interface until
the current one is acknowledged by the device driver
software.

4. The interface raises a priority level four inter-
rupt request to the PDP1T Central Processor
Unit (CPU).

5. In accordance with priorities, the CPU invokes
the interrupt handler which is part of the device
driver software.

6. First, the device driver interrupt handler, vgint,
disables interrupts. Next it reads the interrupt
ID from the interface's IDR to determine which
VG sub-unit generated the interrupt.

7. As soon as the interrupt handler has acquired the
interrupt ID from the IDR, it issues a Control Out
instruction to set the interrupt acknowledge (ACK)
bit in the interface's Control register. This
acknowledges the interrupt and permits IDR to be
changed by subsequent interrupts.

w

8. The interrupt handler performs the function re-
quired for the sub-unit that generated the
interrupt then enables interrupts and returns.

The Programmed Input/Output Channel. The PIO channel

is described in the Programming Concepts Manual (Ref 17:2-4

to 2-7). This channel is a bi-directional data path between

the device driver software and the display system. The in-

.put path is from the display system to the device driver.

The device driver controls the channel in both directions

through the eight interface I/O instructions. The Prc ram-

ming Concepts Manual lists the following uses of the PIO

channel (Ref 17:2-4).

70

1. Acquire status information.
2. Initialize the interface.
3. Read and write display system registers.
4. Start transfer of the user display list.
5. Control, categorize and acknowledge interrupts

The remainder of this section describes each of these capa-

bilities.

Status information can be obtained about both the inter-

face and the display system over the PIO channel. The inter-

face's Control In instruction can be used to check for power

on. Other status information about the display system is

obtained by reading the appropriate display system registers.

The interface is initialized by executing a Control Out

with the initialize (INIT) bit set (Ref 19:6). This is one

of the first things done by the device driver.

Display system registers can be read and written over

the PIO channel with the Programmed Input (PIN) aid Pro-

grammed Output (POUT) routines. These routines are not to

be confused with the Programmed In and Programmed Out in-

structions. PIN and POUT are invoked by the device driver

to read and write display system registers, while Programmed

In and Programmed Out are used by the device driver to read

and write interface registers.

The PIN routine performs the following sequence of

events (Ref 19:8)

1. Issue a Control Out setting the Control register's
Request Input (RQI) bit equal to one, its Register

* IChange (RC) bit equal to one, and its Register
Number (RN) field equal to the address of a display
system register. This causes the interface to

71

request data from the specified register. The
data is transfered over the display system's GP
bus. As long as the interface is still searching
for the data, the Input In Process (IIP) bit is
equal to one.

2. When the IIP bit equals zero, the requested data
has been loaded into the interface's INR.

3. The data is read from INR with a Programmed In
instruction.

The POUT routine consists of the following sequence of events.

1. Issue a Control Out setting the Control register's
RC bit and loading its RN field with the address of
the desired display system register.

2. The output data is loaded into the interface's Data
register with a Programmed Out instruction.

3. Wait for the output process to complete by sensing
the Output In Progress (OIP) bit of the interface's
Control register. When it changes to zero the out-
put process has been completed.

The PIO channel is used to start transfer of the user

display list. First, a Programmed Out instruction is exe-

cuted to load the interface's Base Address Register. Next,

the POUT routine is used to load the GPU's Directory (DIR)

and Picture Base Object (PBO) registers. Finally, the POUT

routine is used to load the GPU's Command (CMD) register

with the commands that cause the GPU to fetch the display

list from computer memory (Ref 18:4-3).

A very important function of the PIO channel is the con-

trol, categorization and acknowledgement of interrupts

(Ref 17:2-5). General interrupt handling can be enabled and

disabled with the Control Out instruction. The POUT routine

can be used to enable and disable particular types of

72

Ifimw"Afm-

interrupts by writing the appropriate value to the appro-

priate display system register. Interrupts are categorized

by first obtaining the interrupt ID over the PIO channel

using the Status In instruction. Interrupts are acknow-

ledged over the PIO channel by invoking the Control Out in-

struction to set the Interrupt Acknowledge (ACK) bit in the

interface's Control register.

Summary

This chapter described the hardware interface's four

addressable registers, eight I/O instructions, and three

communication channels.

Now that peripheral device I/O, the VG display system,

and the PDPII/VG3404 hardware interface have been described,

the device driver routines can be explained. This is accom-

plished in the next chapter.

73

S_ . ,

VI The VG Device Driver

This chapter specifies the requirements for the VG device

driver, describes the overall driver design, and documents

the implementation of the driver.

Requirements

The VG device driver obtained from the University of

Texas at Austin met certain requirements. This section iden-

tifies the original requirements then specifies the require-

ments adopted for AFIT's version of the device driver.

Original Requirements. The VG device driver obtained

from the University of Texas was required to support two

different levels of graphics. These two levels are depicted

in Figure 20 (Ref 12:31).

With the level two graphics, the user display list con-

sists of powerful GPU instructions. The GPU takes the in-

structions from the user display list and transforms them

into a set of more fundamental instructions to be used by the

DCU for display generation. The GPU performs the required

two and three dimensional rotation, translation, windowing,

clipping, curve generation, scaling, and sub-object defini-

tion management.

With level one graphics, the GPU is bypassed and the

user display list is written directly into the RBU. This

means that the user display list must consist only of the

fundamental instructions understood by the DCU. This implies

that the user program is responsible for performing all trans-

74

4.)

0

0

020

H

0

C)

CM

4Z
4E-4 4) 0

75

formations before building the display list. In order to

support the level one graphics, a special DCU/RBU driver

was installed. This driver provided the capability of reading

and writing the RBU directly.

Another main requirement for the original driver was

compatibility with the UNIX version six operating system.

This included utilization of the standard UNIX interface for

character oriented devices and support of the standard UNIX

I/O system calls; open(2), close(2), read(2), write(2), stty,

and gtty.

The original driver was also required to support the

input devices available on the VG display system at the

University of Texas. These consisted of a function switch

box, an alphanumeric keyboard, and a light pen. Even tnough

the original driver only incorporated the routines required

for handling the available input devices, it was designed so

that other input device handlers could be easily added.

The original driver provided most user programs the capa-

bility of reading and writing any addressable display system

register. This capability is very important because the user

program has to be able to load command and control informa-

tion into display system registers. The user program must

*also be able to fetch display system status information and

other data from display system registers. In conjunction

with reading and writing display system registers, the

original driver also allowed user programs to set and get

certain device characteristics.

76

Requirements for AFIT'S VG Device Driver. Since a major

objective of this thesis was to use as much of the original

driver as possible, most of the original driver requirements

were adopted for AFIT's version of the driver. Any changes

that were made to the original requirements were mostly due

to differences in the configuration of AFIT's system.

It was decided to not support the original requirement

for a level one graphics capability. The main reason for this

decision was that the original driver would not fit on AFIT's

PDPll/60 due to limited space on the system. The level one

graphics capability was selected for elimination because it

did not use the display system's most powerful asset, the GPU.

Elimination of the level one graphics did not degrade the

system's capabilities, whereas elimination of the leveletwo

graphics would have limited the system's capabilities severely.

Another main requirement for AFIT's VG driver was com-

patibility with version seven of the UNIX operating system.

To meet this requirement, some changes had to be made to the

original driver. These changes are described in the next

chapter.

AFIT's device driver was required to support the input

devices available on AFIT's VG display system. These include

the function switch box and alphanumeric keyboard supported

by the original driver, plus the data tablet available on

AFIT's system. Since the light pen was not available on

AFIT's system, its interrupt handler was removed from the

driver to conserve space. The ability to easily add new in-

77

put devices to the system was maintained with AFIT's device

driver.

The same UNIX I/0 system calls that were supported by

the original driver are also supported by AFIT's version of

the driver. Although, the routines supporting the stty and

gtty system calls had to be completely rewritten due to

changes in the way UNIX version seven handles these calls,

Overall Design

The driver was designed in a top-down structured approach

to facilitate programming and maintenance. It was designed

for easy addition of more VG input devices such as the joy-

stick and control dials.

The driver was designed around four sub-devices (also

called minor devices) of AFIT's display system; the GPU, data

tablet, alphanumeric keyboard, and function switch box. These

minor devices were assigned minor device numbers 0, 1, 2, and

3 respectively. The structure chart in Figure 21 illustrates

the routines needed to process user program I/O requests on

the four minor devices and the routines needed to process in-

terrupts generated by the four minor devices.

The UNIX routines represented by level zero of the

structure chart were described in chapter three. The routines

in level one of the structure chart are the major device

routines called by UNIX. The major device routines call the

minor device routines in level two of the structure chart.

The open(2), close(2), read(2), and write(2) system

calls cause UNIX to call major device routines vgopen,

78

+))

C.44

w W

43-

>)

'-4

I1

79A

vgclose, vgread, and vgwrite respectively. The stty and gtty

system calls cause UNIX to invoke the vgioctl major device

routine. All of these major device routines are passed a

minor device number which determines which minor device rou-

tines to call. For example, the I/O system call

open("/dev/gpu"l, mode);

causes UNIX to invoke the major device routine vgopen,

passing it minor device number zero (for the GPU minor device).

This minor device number causes vgopen to call minor device

routine gpopen.

Display system interrupts cause UNIX to invoke the vgint

routine. This routine determines which minor device generated

the interrupt, then calls the appropriate minor device inter-

rupt handler.

A new minor device can be added to the system by simply

adding the new minor device routines to level two of the

structure chart. For instance, if a joy stick input device

is added to the sytem then minor device routines jsopen,

jsclose, jsread, jswrite, and jsintr could be easily added

to appropriate places in level two of the structure chart.

A new character oriented special file, "/dev/jst", would be

created with minor device number equal to 4.

With the overall design in mind, the implementation

details are now presented.

80

Implementation

This section first describes the user level implementa-

tion details. This is followed by a complete description of

the driver routines.

User Level Implementation. A character oriented special

file was created for each of the VG minor devices (see Chapter I
VIII for details on creation of these special files). These

files were named gpu, dtb, kbd, and fss for the GPU, data

tablet, alphanumeric keyboard, and function switch box re-

spectively. These four special files were created with major

device number 22 which is the major device number associated

with the VG display system. Minor device numbers 0, l, 2,

and 3 were assigned to the gpu, dtb, kbd, and fss special

files respectively.

The four special files were all attached to the /dev

directory. Therefore, they have pathnames /dev/gpu, /dev/dtb,

/dev/kbd, and /dev/fss. A user program requests I/O on a VG

minor device by first specifying the pathname of the asso-

ciated special file as an input parameter to the open(2)

system call. This opens the specified VG minor device for

access. The open(2) system call returns a file descriptor

to the user program to be passed as an input parameter on

all subsequent I/O requests on the special file associated

with the minor device. When finished with the minor device,

the user program closes the associated special file by passing

the file descriptor as an input parameter to the close(2)

system call. The specific details of user program I/O on

81
* - ,

fM

each of the four minor devices is presented next, All ex-

amples are given in the C programming language,

The GPU Minor Device. The GPU minor device is

accessed via the special file /dev/gpu. User program I/O

requests performed on this file are described here,

Open /dev/gpu. The /dev/gpu special file is

opened for I/O access via a C language statement of the form

gpufd = open("/dev/gpu",2);

where gpufd (gpu file descriptor) represents a variable of

type integer. The open(2) system call returns a file des-

criptor which is placed in variable gpufd. This file des-

criptor is used with all subsequent I/O requests on file

/dev/gpu.

Read /dev/gpu. The /dev/gpu special file is

read by a C language statement of the form below. The

statement

m = read(gpufd,addr,n);

requests that n bytes be read from the VG display system's

RBU and placed in a user buffer that has starting address

addr. The number of bytes actually read is placed in integer

'variable m.

Write /dev/gpu. The write(2) system call is

not supported on the GPU minor device. Therefore, an I/O

error is flagged if a user program invokes the write(2)

system call on special file /dev/gpu.

82

Stty /dev/gpu. When invoked on special file

/dev/gpu, the stty system call is used to either write to a

display system register addressed by the user or invoke one

of five special functions. The form of the call is

stty(gpufd,info);

where gpufd is an integer variable containing the file

descriptor that was returned when the GPU minor device was

opened and info is the beginning address of an integer array

* of length three (int info[3]).

To write to a display system register, info[O] is loaded

with the register address and info[l] is loaded with the data

to be written. Next, the stty system call is invoked. The

following statements illustrate how the call is invoked.

info[0] = display system register address;
info[1] = data;
stty(gpufd,info);

Five special functions may also be invoked with the stty

system call. The following statements illustrate how a

special function is invoked.

info[O] = function identifier;
info[l] = data (if required);
info[2] = data (if required);

Table I summarizes the five special functions available.

83

ADAIIS SE AIR FORCE INST OF TECH WRIOST-PATTERSON AFS 0N SCHOO-ETC F/9 9/2
UIX BASED DEVICE DRIVER FOR THE VECTOR GENERAL 3404 SRAPHICS--ETC(U)

MAR 82 S R STEWART

UNCLASISIFIED AFIT/GCS/MA/BID42*/hhhhII///I/
I~lEEEEElllEEE
IEEEEIIEIIIEEE
EllEllllEllEEI
EIIIIIIIIIIIII
IIE-.---III
llEElllll~lllI

Table I. Stty Special Functions

infoLo] infoLl] infoL2]

Function Function Performed
Identifier Data Data

-1 RBU Value Store value at RBU
Address Address

-2 - Perform RBU reset

-3 - Suspend GPU processing of
user's display list

-4 Restart GPU processing of
user's display list

-5 Integer Set the data tablet inter-
value rupt mask to the specified
from 0-15 value

Gtty /dev/gpu. When invoked on special file

/dev/gpu, the gtty system call is used to read display system

registers. The following statements illustrate how a display

system register is read via the gtty system call. In this

example, info is a variable of type integer.

info = address of a display system register;
gtty(gpufd,info);

In the above example, the data read from the specified

display system register is returned in the integer variable

named info.

Close /dev/gpu. A user program closes the

/dev/gpu special file with the following statement:

close(gpufd);

884

.. "...... - / _ ,,. ,. *. , _ . _ i
°

where integer variable gpufd contains the file descriptor

returned when the file was opened.

The Data Tablet Minor Device. The data tablet

minor device is accessed via the special file /dev/dtb. User

program I/0 requests performed on this file are described here.

Open /dev/dtb. The /dev/dtb special file is

opened by a statement of the following form.

dtbfd = open("/dev/dtb",2);

This statement places a file descriptor in integer variable

dtbfd (data tablet file descriptor).

Read /dev/dtb. The data tablet input device

is read by a C-language statement of the following form.

n = read(dtbfd,&buf,m);

In this statement, m is the number of x-y coordinate pairs

requested, buf is an integer array that must be at least 3m

in length, dtbfd is an integer variable containing the data

tablet file descriptor, and n is an integer variable which is

assigned the actual number of x-y coordinate pairs read. For

each x-y coordinate pair read, three pieces of data are re-

turned; (1) an x coordinate value, (2) a y coordinate value,

and (3) a data tablet interrupt ID which indicates which

type of data tablet interrupt generated the x-y coordinate

pair. During a read, these data "triples" are placed in the

buf array. This is why the buf array must be at least 3m in

length.

85

* .,

Table II. Data Tablet Interrupt IDs

Data Tablet Interrupt ID Returned
Interrupt Type To User Program

PRS I

PNN 2

YOS 4

xos 8

Four different types of interrupts may be generated by

the data tablet input device; (1) the pressure switch on the

data tablet stylus is depressed (PRS), (2) the data tablet

stylus is within the "near" zone above the data tablet (PNN),

(3) the data tablet stylus is moved off scale (i.e., out of

bounds) in the y direction (YOS), or (4) the data tablet'

stylus is moved off scale (i.e., out of bounds) in the x

direction (XOS) (Ref 17:2-83). Table II contains the ID

number for each type of data tablet interrupt.

A user program is allowed to specify which data tablet

interrupts it will recognize. This is accomplished by in-

voking a special function via the stty system call. The

following code illustrates how the special function is in-

voked.

info[O] = -5;
info[l] = data tablet interrupt mask value;
stty(gpufd,info);

This special function was already presented in the section

entitled Stty /dev/gpu. Table III contains all the data

86

I.

Table III. Data Tablet Interrupt Masks

Interrupt Mask Interrupts Recognized
Value XOS YOS PNN PRS

0
1 x
2 X
3 X X
4 X
5 X X
6 X X
7 x x x
8 X
9 X X

10 X X
11 X X X
12 X X
13 X X X
14 X X X
15 (default Value) X X X X

tablet interrupt mask values along with the respective data

tablet interrupts recognized. Notice that with the default

interrupt mask value (15) the user program recognizes all

four types of data tablet interrupts.

The following C-language code is an example of a user

program that reads one x-y coordinate pair from the data

tablet input device. The x-y coordinate pair returned must

be generated by a PRS interrupt from the data tablet stylus.

1. main()
2. (int gpufd, dtbfd, n, buf[3);
3. gpufd = open("/dev/gpu",2);
4. dtbfd = open("/dev/dtb",2);
5. buf[0]=-5;
6. buf[l=Ol;
7. stty(gpufd,buf);
8. n=o;
9. while (n<l) n=read(dtbfd,&buf,l);

10.
11. close(dtbfd);

'I

;87

12. close(gpufd);

13.1

In this program the data tablet interrupt mask is set

to 1 (lines 5-7). This ensures that only x-y coordinate

pairs generated by a PRS interrupt will be returned to the

user program.

A "while" control statement is used to execute the

read(2) system call (line 9). This is done because the

read(2) system call returns a -1 if no input data is available.

The while statement continues to invoke the read(2) system

call until input data is read. The while statement is neces-

sary because the device driver software does not support a

"time-out" on a read. That is, the device driver software

does not wait for input if no input data is readily available

when the read is invoked.

After data is read, buflO] contains the x coordinate,

bufEl] contains the y coordinate, and bufE2] contains the

data tablet interrupt ID (which will be 1 in the example pro-

gram above.)

Write /dev/dtb. The data tablet is a read

only device. Therefore, an I/O error is flagged by UNIX if

a user program attempts to write to the data tablet.

Stty /dev/dtb. The status of the data tablet

input device can be changed by a user program via the stty

system call. The form of the call is

stty(dtbfd, x);

88

where x is an integer variable containing a status value for

AP the data tablet and dtbfd is an integer variable containing

the file descriptor for file /dev/dtb.

Gtty /dev/dtb. A user program fetches the

status of the data tablet input device via the gtty system

call. The form of the call is given below.

gtty(dtbfd, x);

This call places the status of the data tablet in the integer

variable x.

Close /dev/dtb. The data tablet minor device

is closed by a user program with the following statement.

close(dtbfd);

The integer variable dtbfd contains the file description for

file /dev/dtb.

The Alphanumeric Keyboard Minor Device. The alpha-

numeric keyboard input device is accessed via the special

file /dev/kbd. User program I/O requests performed on this

file are described here.

Open /dev/kbd. The /dev/kbd special file is

opened by a statement of the following form

kbdfd = open("/dev/kbd",2);

This statement places a file descriptor in integer variable

kbdfd (keyboard file descriptor).

Read /dev/kbd. The alphanumeric keyboard is

89

ii. 89

read with a statement of the following form,

n - read(kbdfd,&bufm);

In this statement, m is the number of characters requested,

buf is an integer array of length m (into which the input

characters will be read), kbdfd is an integer variable con-

taining the file descriptor, and n is an integer variable

which is assigned the actual number of characters read (or

-1 if no input characters are available at the time of the

read). The ASCII representation of the input character is

the value returned to the user program.

Here again, a while statement may be used to wait for

input to become available. For example, the C-language

statements

n=O;
while (n<l) n=read(kbdfd,&buf,l);

continue invoking the read(2) system call until one character

is read from the VG's alphanumeric keyboard input device.

Write /dev/kbd. The VG's alphanumeric key-

board is a read only device. If a user program attempts to

write to it then UNIX flags an I/O error condition.

Stty and Gtty /dev/kbd. The stty and gtty

system calls allow a user program to set and get the status

of the alphanumeric keyboard input device. The forms of the

calls are given below.

stty(kbdfd,x);
gtty(kbdfd,x);

90

These calls function Just like the calls described under

Stty /dev/dtb and Gtty /dev/dtb.

Close /dev/kbd. A user program closes the

alphanumeric keyboard with the following system call,

close(kbdfd);

The Function Switch Box Minor Device. The function

switch box input device is accessed via the special file

/dev/fss. User program I/0 requests performed on this file

are described here.

Open /dev/fss. The /dev/fss special file is

opened by a statement of the following form.

fssfd = open("/dev/fss",2);

This statement opens the function switch box input device

and places a file descriptor in the integer variable fssfd

(function switches file descriptor).

Read /dev/fss. The function switches are read

with a statement of the following form.

n = read(fssfd,&buf,m);

In this statement, m is the number of values requested, buf

is an integer array of length m (into which the input values

will be read), fssfd is an integer variable containing the

file descriptor, and n is an integer variable which is

assigned the actual number of characters read (or -1 if no

input values are available at the time of the read).

91

Once again, a while statement may be used to wait for

input to become available. For example, the C-language

statements

n=o;
while (n<l) ntread(fssfd,&bufl);

continue invoking the read(2) system call until one value is

read from the VG's function switch box iput device.

Write /dev/fss. The VGs function switch box

is a read only device. If a user program attempts to write

to it, then UNIX flags an I/0 error condition.

Stty and Gtty /dev/fss. The stty and gtty

system calls allow a user program to set and get the status

of the function switch box input device. The forms of the

calls are given below.

stty(fssfdx);
gtty(fssfd,x);

These calls function just like the calls described under Stty

/dev/dtb and Gtty /dev/dtb.

Close /dev/fss. A user program closes the

4 function switch box Input device with the following call

close(fssfd);

In this statement, fs'sfd is an integer variable containing

the file descriptor for file./dev/fss.

This ends the section on user level documentation. The

* next section documents the device driver routines.

92

The Device Driver Routines. A complete listing of the

VG device driver routines is included as Appendix D. The

description of these routines is divided into the following

five sections.

1. Include Files
2. Global Data Structures
3. Common Procedures
4. Major Device Routines
5. Minor Device Routines

Include Files. Several "header" files containing

global declarations are included as part of the device driver

software. These files are included via the C programming

language file inclusion operator, #include (Refs 7:86 and

10:1-3). The following eight header files are included in

the device driver software (see lines 72-79, Appendix D).

1. param.h
2. buf.h
3. conf.h
4. dir.h
5. user.h
6. tty.h
7. proc.h
8. vg.h

These files are all located in the /sys/h directory.

The first seven files contain global declarations for UNIX

constants and structures, while the eighth file, vg.h, con-

tains global declarations for display system constants. These

files are referenced as needed throughout the remaining dis-

cussion of the device driver routines.

Global Data Structures. This section describes the

global data structures used by the device driver software.

.1 93

, . ..- .. . ,_ ,,. , .

They are the UNIX proc and u structures, the vgunit array,

and the VG minor device switch table (vgdev).

The UNIX proc and u Structures. The UNIX

proc and u structures are used to pass data and control in-

formation back and forth between UNIX and the device driver

software. The specific elements of these two structures

referenced by the device driver software will be explained

as they are encountered.

The vgunit Array. The vgunit array was created

to keep track of activity on the four VG minor devices. This

structure is defined below (also see lines 86-90, Appendix D).

1. struct vgstruc {
2. struct clist io;
3. int status;
4. int *vg procp;
5. } vgunit[4];

Lines 1-4 define a VG data structure, vgstruc, consisting of

three elements; io, status, and vg_procp. Line five declares

an array, named vgunit, consisting of four occurrences of the

VG data structure; one for each of the four VG minor devices.

Figure 22 a illustrates the data structure created by this

code. The minor device numbers are used as indices into the

vgunit array. Therefore, vgunit[0] is associated with the

"GPU minor device, vgunit[l] with the data tablet minor

device, etc. The purpose for the io, status, and vgprocp

elements is now explained.

Each minor device has a first-in first-out (FIFO) queue

associated with it for I/O purposes. The io element of each

94

vgunit: 0 lo

status 0
bo

vg pro4

ii

(b))

Fig 2. Thevgu tDataustuur

95 pre

minor device data structure is a header for the appropriate

FIFO queue. For example, vgunitfl.io is a reference to

the header of the data tablet's I/0 queue while vgunit[2].io

is a reference to the header of the alphanumeric keyboard's

I/O queue.

Each io element is further broken down into three fields;

c_cc, ccf, and ccl. The ccc field contains the total

number of elements in the FIFO queue, while the c cf and

c cl fields contain pointers to the first and last elements

of the FIFO queue respectively. Figure 22b illustrates the

three fields of each io element.

The status element of each minor device data structure

indicates whether the corresponding minor device is opened

or closed. In the case of the GPU minor device it may also

indicate whether the GPU is "running", "waiting", or "sleeping".

The vgprocp element of the minor device data structure

is an indirect pointer to the proc structure of the user

process that opened the minor device. It is an indirect

pointer because it actually points at the u.u_procp element

of the u structure which in turn points at the appropriate

proc structure.

Use of the vgunit array will be explained more as the

.device driver routines are described.

The VG Minor Device Switch Table. The device

driver software uses the UNIX idea of a device switch table

for calling minor device routines. This table, named vgdev,

is declared and initialized on lines 538-543 of Appendix D.

96

I9

The table is declared as a cdevsw structure. This structure

is defined in UNIX source file /sys/h/conf.h. The vgdev

table is used exactly like UNIX's cdevsw table. That is,

each row of the vgdev table contains the addresses of the

open, close, read, write, and I/0 control routines associated

with a particular VG minor device. Row zero contains the

routines for the GPU minor device, row one for the data

tablet, row two for the alphanumeric keyboard, and row three

for the function switches.

The minor device number passed to the major device rou-

tines by UNIX is used as an index into the vgdev table to

select the appropriate set of minor device routines. The

type of I/O system call determines which routine within the

set is invoked.

Common Procedures. The following procedures are

called from several different places in the driver software.

1. PIN
2. POUT
3. gpwait
4. gpurestart
5. putc
6. getc
7. passc
8. sleep
9. wakeup

10. psignal
11. fuiword
12. suiword

Routines 1-4 are defined in the device driver program

while routines 5-12 are part of the UNIX source code. A

brief description of each routine is given here.

PIN and POUT. The PIN and POUT procedures

97

represent the implementation of the Programmed INput and

Programmed OUTput functions described in the Programming

Concepts Manual and the PDPll Interface Specification (Refs

17:2-5 and 19:8).

The PIN procedure is used to read the contents of dis-

play system registers. The address of the register to be

read is passed to PIN as an input parameter. First, PIN

performs a Control Out instruction to load the register add-

ress into the Register Number (RN) field of the interface's

Control Register. The Register Change (RC) bit, Request

Input (RQI) bit, and Interrupt Enable (IE) bit of the inter-

face's Control register are also set by the Control Out in-

struction. This causes the interface to request the desired

data. PIN waits for completion of the input request then

reads the data from the interface's Input Buffer Register

CINR) with a Programmed In instruction. PIN returns this

data to the routine that made the call.

The POUT procedure is used to write display system

registers. The address of a display system register and the

data to be written are passed to POUT as input parameters.

First POUT performs a Control Out instruction to load the

register address into the RN field of the interface's Control

*register and to set the RC and IE bits. Next, the data is

written to the specified display system register via a Pro-

grammed Out instruction. Finally, POUT waits for the output

operation to terminate then returns.

gpwait and gpurestart. The gpwait and

98
,'4

gpurestart procedures are used to stop and start GPU pro-

cessing. The routines are called by the GPU, data tablet,

alphanumeric keyboard, and function switch box interrupt

handlers (gpint, dtint, kbintr, and fsintr).

The gpwait procedure is called to halt GPU processing

temporarily. This ensures that the GP bus is free for pro-

cessing an interrupt. The gpurestart procedure is called

to restart the GPU processor.

putc and getc. The putc and getc routines

are UNIX procedures written in PDPll assembly language. The

source code for these two routines is found in file /sys/

conf/mchi.s. The procedures are used to manage FIFO queues

of 8-bit bytes.

The putc routine is used to add a character to a FIFO

queue of characters. The procedure accepts two input argu-

ments; C1) the address of a queue header, i.e., an io element

within the vgunit array, and (2) the character to be added

to the queue. Lion's describes in detail how the FIFO queue

is set up and maintained (Ref 10:23-1 to 23-2). Here it

suffices to say that putc takes care of allocating more space

to the queue, adding the character to the queue, adjusting

the queue pointers (ccf and ccl) stored in the queue header,

and updating the queue count Cc_cc).

The getc procedure is used to fetch characters from a

FIFO queue of characters. The procedure is called with the

address of a queue header as an input argument. The getc

procedure takes care of all the overhead required to fetch

99 L

a character from the specified queue. It fetches the next

character from the queue, returns freed space to the avail-

able list, and adjusts the queue pointers and queue count

stored in the queue header (Ref 10:23-2). If the queue is

empty then getc returns a minus one, otherwise it returns

the character fetched from the queue.

passc. The passc routine is a UNIX procedure

which passes back a byte of information to the user program

(Ref 11:65). The data is placed in the location referenced

by the contents of u.u base. The procedure updates u.u base,

u.u_count, and u.uoffset. If u.ucount goes to zero, sig-

naling the last byte of the user's read, then the procedure

returns a minus one. Otherwise, it returns a zero.

sleep and wakeup. The sleep and wakeup pro-

cedures are described in detail by Lions (Ref 10:8-3). They

are UNIX routines used to suspend and reactivate user pro-

cesses.

The sleep routine is used to suspend the process that is

currently running. The procedure accepts two input para-

meters; (1) the reason for "sleeping" and (2) the priority

with which the process will run upon being "awakened".

The wakeup procedure is invoked to reactivate a

."sleeping" process. The procedure is passed the reason for

sleeping as an input parameter. As stated by Lions, the

procedure "simply searches the set of all processes, looking

for any processes which are "sleeping" for a specified reason,

and reactivates these individually" (Ref(10:8-3). The

100

"awakened" processes enter the scheduling queue at the priority

specified when the process was put to sleep (Ref l1;20),

psignal. The psignal procedure is a UNIX pro-

cedure which signals a software interrupt to the system. A

detailed description of software interrupts is given by Lions

(Ref 10:13-1 to 13-6).

The psignal procedure accepts two input parameters; (1)

a pointer to a proc structure and (2) an interrupt signal.

UNIX recognizes 15 different software interrupt signals. They

are defined in UNIX source file /sys/h/param.h. Psignal

stores the specified interrupt signal in the psig element of

the specified proc structure. The system checks psig peri-

odically to determine if a software interrupt signal is pending.

If there is, then it is processed. Only one software inter-

rupt can be pending for a process at any given time (Ref 10;

13-1).

fuiword and suiword. The fuiword and suiword

procedures are UNIX procedures written in PDPll assembly lan-

guage. These procedures are used to fetch and store 16-bit

data words in the user address space.

The fuiword procedure (Refs 10:10-1 and 11:8) is passed

a user space virtual address as an input argument. The pro-

cedure fetches and returns the contents of the location ad-

dressed by the input argument. If an error occurs in this

process, the procedure returns a minus one.

The suiword procedure (Ref 11;8) is passed a user space

virtual address and a data word as input arguments. The pro-

101

7= 4.

cedure stores the 16-bit data word in the specified location

of the user address space,

Major Device Routines. The generic or major device

routines for the VG display system are vgopen, vgclose, vgread,

vgwrite, vgioctl, and vgint. These are the routines invoked

by UNIX to process the device dependent portion of dis-

play system I/O. Each major device routine performs the func-

tions that are common to all of their subordinate minor de-

vice routines, then calls the appropriate minor device routine.

The vgopen, vgclose, vgread, vgwrite, and vgioctl routines

use the minor device number passed from UNIX to call the minor

device routines via the minor device switch table, vgdev.

The vgint interrupt handler uses a case statement keyed on

the interrupt ID to call the appropriate minor device inter-

rupt handler routine. Each of the major device routines are

now described.

vgopen. The vgopen routine (lines 548-559,

Appendix D) is called by UNIX to process the device dependent

portion of an open(2) system call. The routine is passed a

minor device number as an input argument. The minor device

number is used as an index into the vgunit array to check the

status of the corresponding minor device. If the minor device

has already been opened then an I/O error code is placed in

u.uerror and a return is made to UNIX. Otherwise, the proc

structure pointer, vgunit[mdev).vg_procp, is initialized to

reference the proc structure of the process opening the minor

device. Next, the appropriate minor device open routine is

102

called via the vgdev table. After the minor device routine

returns, display system interrupts are enabled. This is

accomplished by performing a Programmed Out to set the Inter-

rupt Enable (IE) bit of the interface's Control Register.

Finally, the status of the minor device is set to OPEN then

the routine returns control to UNIX.

vgclose. The vgclose routine (lines 584-590,

Appendix D) is called to process the device dependent portion

of a close(2) system call. UNIX passes a minor device number

as an input parameter. The routine uses the minor device

number to call the appropriate minor device close routine via

the vgdev table, enables display system interrupts, and sets

the status of the appropriate minor device to zero indicating

that the minor device is now closed.

vgread. The vgread routine (lines 562-568,

Appendix D) is called to process the device dependent portion

of a read(2) system call. The minor device number passed as

an input parameter is used to call the appropriate minor

device read routine via the vgdev table, then display system

interrupts are enabled.

vgwrite. The vgwrite routine (lines 573-579,

Appendix D) is invoked as the result of a write(2) system

call. The minor device number passed as an input argument is

used to call the appropriate minor device write routine via

the vgdev table, then display system interrupts are enabled.

vgioctl. The vgioctl routine (lines 628-632,

Appendix D) is invoked as the result of a stty or gtty system

103

call (see ioctl(2)). UNIX passes a minor device number and

a flag as input arguments. The minor device number is used

to call the appropriate minor device I/O control routine via

the vgdev table. The flag indicates whether the call is a

stty or a gtty call. This flag is passed on to the minor

device I/O control routine.

vgint. The vgint routine (lines 595-627,

Appendix D) is the major device interrupt handler for the VG

display system. It is called by UNIX when a display system

event interrupts the PDPll processor. First, the interrupt

ID is obtained by performing a Programmed In on the inter-

face's Status Register. Next, the processor priority is set

to level seven, the highest possible priority, to prevent all

other interrupts from interfering with processing of the

current interrupt.

Next, a case statement, keyed on the interrupt ID, is

used to call the appropriate minor device interrupt handler.

A Programmed Out is performed to set the interrupt acknow-

ledge (AKC) and Interrupt Enable (IE) bits of the interfaces

Control Register. Finally, the processor priority level is

set low and control is returned to UNIX.

Unrecognized interrupts are processed by the case

statemenf's default condition. An error message is printed

and the interface is reinitialized.

This concludes the description of the major device

routines. The minor device routines are now described,

Minor Device Routines. The routines associated

104-.

with the GPU, data tablet, alphanumeric keyboard, and func-

tion switch box minor devices are described in this section.

The routines are presented by minor device.

GPU Routines. The GPU minor device routines

handle the GPU portion of the VG display system. The routines

include gpopen, gpclose, rbread, gpwrite, and vgsgtty.

gpopen. The gpopen routine (lines '44!.- . .

460, Appendix D) is called by vgopen. The routine locks the

user process in core, initializes the interface, and loads

the interface's Base Address Register (BAR).

The user process is locked into core to prevent process

swapping during display system access. This is accomplished

by ORing the SSYS and SLOCK flags (defined in /sys/h/param.h)

into the p_flag element of the process's proc structure

(Ref 11:3).

The interface is initialized by issuing a Programmed

Out instruction to set the Initialize (INIT) bit of the

interface's Control Register.

The interface's BAR is loaded from the appropriate PDPll

user space segmentation register. If the user process does

not share a text segment then the base address is taken from

the first User Instruction Space Address Register (UISA)

located at virtual address 0177640. This register is called

APR in the driver software (line 33, Appendix D). It con-

tains the address of the zeroth page of the user address

space.

If the user process does share a text segment with

105

another process then the zeroth page of the user address

space may not be contiguous with the rest of the user pro-

cess. In this case, the address of the first page of the

contiguous portion of the user's address space is calculated

and loaded into the interface's BAR.

gpclose. The gpclose routine (lines

487-492, Appendix D) is called by vgclose. The routine

clears the GPU command register (display system address 07),

stops the transfer of the refresh list from the RBU to the

DCU, and unlocks the user process from core.

The GPU command register is cleared by writing zeroes

to it via a Programmed Output (POUT). Transfer of the re-

fresh list is inhibited by writing a 010 to the START/STOP

field of the DCU control register (display system address

0400) (Ref 20:2-6). The user process is unlocked from core

by removing the SSYS and SLOCK flags from the appropriate

proc structure's p_flag element.

rbread. The rbread routine (lines 463-

475, Appendix D) is called by vgread to process a read request

on the GPU minor device. However, this routine really has

nothing to do with the GPU. Instead, it allows a user pro-

gram to read the contents of the RBU, i.e., read the refresh

-list. This capability was provided so that the refresh list

could be read out, converted to raster form, and displayed on

a raster scan device.

The routine uses u.ucount, u.ubase, and u.uoffset

which contain the number of words to be read, the address of

* f 106

a user buffer, and current offset in the file. If u.u count

and u.u base do not start on a word boundary then they are

rounded down to the next word boundary. The routine reads

u.u count words from the RBU starting at u.u offset. The

data read is placed in the user buffer addressed by u.u base.

This is accomplished with the passc routine described earlier.

The POUT procedure is used to load the RBU's memory

address register (rbumar) with the address from u.uoffset.

This causes the contents of the addressed RBU word to be

loaded into the RBU's data Register (rbudat). The PIN pro-

cedure is used to read the contents of rbudat. The data

read is placed in the user's buffer with the passc routine.

This entire process is repeated until u.u count words have

been read from the RBU.

gpwrite. The gpwrite routine (lines

479-482, Appendix D) is called by major device routine vgwrite.

Since the GPU minor device cannot be written, the routine

simply loads u.uerror with the I/O error flag, EIO, and

returns.

vgsgtty. The vgsgtty routine (lines 100-

147, Appendix D) is called by major device routine vgioctl

to process the device dependent portion of the stty and gtty

system calls. The stty and gtty system calls are handled

differently by UNIX version seven than by UNIX version six.

Therefore, vgsgtty had to be completely rewritten,

The structure chart in Figure 23 illustrates the func-

tions carried out by the vgsgtty routine. First, vgsgtty

107

0 V)

-H-

0

41-3
4> bo

bo

Gi cd t (
I' -4 0)

~-44J
bo 4-) -)

43 0

bD

CCI

4-'-

rz4

108

4S .

retrieves the address of the user's data array from u.u arg[2].

Next, the routine uses a case statement keyed on the flag in-

put argument to control whether a gtty, stty, or unknown com-

mand is processed.

In the gtty case, the contents of a display system

register are read and passed back to the user. This is ac-

complished by fetching the address of the display system

register from the first location of the user's data array.

This is done with the UNIX fuiword function. Next, the spe-

cified display system register is read with the FIN routine.

Finally, the data is passed back to the first location of the

user's data array via a call to the UNIX suiword function.

For the stty case, all three words of the user data

array are fetched via three calls to the fuiword function.

A case statement keyed on the value retrieved from the first

location of the user's data array determines what to do next.

If the case value is -1, -2, -3, -4, or -5, then the asso-

ciated special function is executed; otherwise, a display

system register is written.

With the -1 case, the data retrieved from the third

word of the user's data array is written to the RBU location

addressed by the value retrieved from the second word of the

aser's data array. This is accomplished with the POUT func-

tion.

For the -2 case, a call is made to the RBU reset proce-

dure, RBURSET. This function resets the RBU by clearing

both of the RBU's buffers. It also initializes the RBU's

109

status and control registers (Ref 20;3-6).

The -3 and -4 cases invoke the gpwait and gpurestart

routines respectively. These routines were described in the

section on common procedures.

With the -5 case, the data retrieved from the second

word of the user buffer is loaded into the data tablet's in-

terrupt enable mask, dtintmask.

Any number of special functions can be added to the

system by simply adding more cases to the software.

If the case value is not -1, -2, -3, -4, or -5 then it

is interpreted as the address of a display system register.

In this case, the data retrieved from the second location of

the user's data array is written to the display system register

addressed by the value retrieved from the first location of

the user's data array.

Data Tablet Routines. The data tablet minor

device routines handle the data tablet input device. They

are dtopen, dtclose, dtread, dtwrite, fskbdtsgtty, and dtintr.

dtopen. The dtopen routine (lines 213-

217, Appendix D) is called by vgopen to enable interrupts

from the data tablet input device. This is accomplished by

using a POUT to set the interrupt enable (IEN) bit of the data

tablet's status (DTS) register (Ref 17:2-82).

dtclose. The dtclose routine (lines

221-225, Appendix D) is called by vgclose to disable inter-

rupts from the data tablet and to flush the data tablet in-

terrupt report queue. Interrupts are disabled by invoking

110

the POUT function to clear the IEN bit of the DTS register,

The interrupt report queue is emptied by invoking the getc

routine on the queue until it is completely empty.

dtread. The dtread routine (lines 236-

247, Appendix D) is called by vgread. The uu count variable

* contains the number of x-y coordinate pairs requested by the

read(2) system call.

The dtread routine fetches an x-y coordinate pair and

the associated interrupt identifier from the data tablet in-

terrupt report queue and passes them back to the user buffer

via calls to the UNIX passc procedure. This continues until

u.u count goes to zero or until the interrupt report queue is

empty, whichever occurs first.

dtwrite. The dtwrite routine (lines

232-233, Appendix D) is called by vgwrite. Since the data

tablet is a read only device, the routine simply loads

u.uerror with the I/O error flag, EIO, and returns.

fskbdtsgtty. The fskbdtsgtty routine

(lines 151-170, Appendix D) is called by vgioctl to process

the device dependent portion of the stty and gtty system

calls with respect to the function switch box, alphanumeric

keyboard, and data tablet minor devices. As with the vgsgtty

4. routine, the fskbdtsgtty routine had to be completely re-

written due to differences between UNIX versions six and

seven.

The routine is passed a minor device number and a flag

as input arguments. The flag is either TIOCGETP for a gtty

111

call or TIOCSETP for a stty call, The minor device number

is either 1, 2, or 3 for the data tablet, alphanumeric key-

board, or function switch box minor devices.

First, the routine retrieves the address of the user's

data array that was specified in the system call. This

address is retrieved from u.u arg[2]. Next, a case statement

keyed on the flag input argument is used to process either a

stty or a gtty.

In the gtty case (flag=TIOCGETP), the status of the

specified minor device is passed back to the first location

of the user's data array via a call to suiword.

in the stty case (flag=TIOCSETP), the status of the

specified minor device is set to the value retrieved from the

first word of the user's data array.

dtintr. The dtintr routine (lines 250-

264, Appendix D) is called by vgint to process interrupts

generated by the data tablet input device. The data tablet's

status register is read with a PIN to obtain the interrupt

identifier. The interrupt identifier is ANDed with the data

tablet interrupt mask, dtintmask, to see if the interrupt is

recognized by the user program. If it is, then the data

tablet's x and y data registers are read. The x-y coordinates

and the interrupt identifier are then placed on the data

tablet's interrupt report queue via calls to the UNIX putc

routine. Before returning, the routine enables data tablet

interrupts by setting the IEN bit of the data tablet's status

register.

112

The Alphanumeric Keyboard Routines, The alpha-

numeric keyboard minor device routines handle the alphanumeric

keyboard input device. They are kbopen, kbclose, kbread,

kbwrite, fskbdtsgtty, and kbintr. The fskbdtsgtty routine

was described under the data tablet routines. Therefore, it

is not included here.

kbopen. The kbopen routine (lines 269-

271, Appendix D) is called by vgopen to enable interrupts

from the alphanumeric keyboard input device. This is accom-

plished by setting the KIE bit of the keyboard register (Ref

17:2-84).

kbclose. The kbclose routine (lines

276-280, Appendix D) is called by vgclose to disable inter-

rupts from the alphanumeric keyboard and to flush the key-

board's interrupt report queue. Interrupts are disabled by

clearing the KIE bit with a call to POUT. The interrupt

report queue is emptied by repeatedly invoking the getc rou-

tine on the queue.

kbread. The kbread routine (lines 298-

315, Appendix D) is called by vgread. The routine fetches a

character from the keyboard's interrupt report queue and

passes it to the user program via a call to the UNIX passc

routine. This continues until u.u count goes to zero or until

the interrupt report queue is emptied, whichever occurs first.

The routine will also terminate if the character read is a

carriage return ('/n') or a control D ('/004').

kbwrite. The kbwrite routine (lines

113

. : ,, , _ - .-

294-297, Appendix D) is called by vgwrite. Since the alpha-

numeric keyboard is a read only device, the routine simply

loads u.uerror with the I/O error flag, EIO, and returns.

kbintr. The kbintr routine (lines 320-

326, Appendix D) is called by vgint to process interrupts

generated by the alphanumeric keyboard input device. The

routine uses the PIN function to read a character from the

low order byte of the keyboard register. Next, the routine

uses the putc function to place the character on the key-

board's interrupt report queue. Before returning, interrupts

are enabled for the keyboard.

The Function Switch Box Routines. The minor

device routines associated with the function switch box in-

put device are fsopen, fsclose, fsread, fswrite, fsintr, and

fskbdtsgtty. Once again, fskbdtsgtty has already been des-

cribed under the data tablet routines.

fsopen. The fsopen routine (lines 337-

340) is called by vgopen to enable interrupts from the func-

tion switch box input device. This is accomplished by setting

the IEO and IEl bits of the Function Switch Control Register

(FSKC) (Ref 20:2-22).

fsclose. The fsclose routine (lines 344-

348) is called by vgclose to disable interrupts from the

function switch box input device and to flush the function

switch box interrupt report queue. Interrupts are disabled

by using a POUT to clear the IEO and IEl bits of the FSKC

register. The interrupt report queue is emptied by succes-

114

.... =- ' " l'I I - "" - i ~ i . V.- , - ;

sive calls to the getc function.

faread. The fsread routine (lines 364-

392) is called by vgread to transfer u.u count function

switch readings to the user program. The routine first

fetches a flag and a function switch value from the function

switch box interrupt report queue. The function switch value

is converted to an integer between 1 and 16. The flag indi-

cates whether the function switch vaiue came from the SOO-S.

group or from the S16-331 group. If the function switch

value came from the S16-S31 group, then the value plus 16 is

returned to the user program; otherwise, the value itself is

returned. This continues until i.u. count goes to zero or

the function switch box interrupt report queue is emptied,

whichever occurs first.

fswrite. The fswrite routine (lines

359-362) is called by vgwrite. Since the function switch

box is a read only device, the routine simply loads u.u error

with the I/O error flag, EIO, and returns.

fsintr. The fsintr routine (lines 397-

412, Appendix D) is called by vgint to process interrupts

generated by the function switch box input device. The rou-

tine determines whether the function switch depressed is in

the SOO-S15 pr the S16-$31 group. If in the SOO-S15 group,

the FSLO register is read, else the FSL1 register is read.

The contents of the register are placed on the function

switch box interrupt report queue with a flag indicating

which register the data came from. The routine enables

115

interrupts from the function switch box before returning,

Summary

This chapter presented the device driver requirements,

device driver design, user level documentation, and documen-

tation of the device driver code itself. The next chapter

deals with the modifications made to McCallum's original

software so that it would run on AFIT's system.

Ti 116

VII Device Driver Updates

Some changes were made to the original device driver

obtained from the University of Texas so that it would run

on AFIT's system. These changes fall into three categories;

(1) changes due to space limitations on AFIT's PDPll/60, (2)

changes due to display system differences, and (3) changes

due to differences between UNIX versions six and seven.

These three categories are discussed in this chapter.

Space Limitations

The original VG device driver would not fit under AFIT's

current PDPII/60 system configuration. Therefore, the driver

had to be trimmed downed in size. The following three fea-

tures were removed from the original driver to make it smaller;

(1) the level one graphics support, (2) the code intended to

enable timeouts to occur during input device reads, and (3)

the code supporting the VG light pen device.

Removal of Level One Graphics Support. In the search

for ways to trim down the size of the device driver, it was

decided to eliminate McCallum's level one graphics support.

This level did not use the GPU and therefore did not exercise

the full potential of the display system.

In the level one graphics support, the RBU was treated

as minor device number 1 with rbopen, rbread, rbwrite, rbclose,

rbsgtty, and rbintr as the minor device routines. The rbopen,

rbclose, and rbwrite routines were removed from the driver

software. Since the rbread and rbsgtty routines were shared

117

In.4"'

with the GPU minor device, they were not removed, After re-

moval of the RBU minor device, the name rbsgtty no longer had

meaning. Therefore it was changed to vgsgtty,

The special function named staticopy was removed from

the system. This routine was used to copy the static segment

of the RBU from one RBU buffer to the other when the RBU was

in double buffer mode. This was a rough attempt to allow static

segments to run better for the level one graphics routines.

Removal of Code for Timeouts. The original driver con-

tained code intended to allow a read invoked on a VG input

device to timeout if no input was received within a specified

period of time. The author of the original driver never got

this feature to work. Therefore, it was removed to reduce

the size of the driver software. The timeout code removed

included the vgwait function, the tmoutdev function, the time

and dtime elements from the vgunit structure, the constant

GPU timeout, and the code within the kbread and fsread rou-

tines intended for implementation of the timeout feature,

Removal of Code for the Light Pen. Since AFIT's VG dis-

play system does not have a light pen device, the code in the

original driver supporting the light pen was removed to de-

crease the size of the driver. The following code was re-

moved: the rbint routine which processed light pen inter-

rupts; the cursup function and global variables vg_x, vgy,

vg_hitaddr, and vgincr which were used to update the cursor

after a light pen hit; and three special functions in the

rbsgtty routine (subsequently changed to vgsgtty) for enabling

118

light pen hits, disabling light pen hits, and loading vg-x

and vg-y.

Display System Differences

AFIT's VG display system has a data tablet input device,

but does not have a light pen device. The code added for the

data tablet was described in the last chapter. The data

tablet was assigned minor device number 1, which became avail-

able when the RBU minor device was removed from the system.

Differences Between UNIX Versions Six and Seven

Many differences exist between UNIX version six and

UNIX version seven. These differences are transparent to

users but not necessarily transparent to all device drivers.

Several changes were required to make the original VG driver

run under UNIX version seven. The differences between ver-

sion six and version seven affecting the VG device driver are

described here.

UNIX version six provided the following structure for

accessing the low byte and high byte of a 16 bit computer

word.

struct{char lobyte; char hibyte;};

This structure was defined in the version six source file

param.h. The version seven source file param.h does not con-

tain the structure. Since the VG device driver references

the structure often, it was added to the beginning of the

driver software (see line 93, Appendix D).

119

UNIX version six also provided the structure

struct {char d minor; char d major;};

for accessing the major and minor numbers of a device name.

This structure was declared in the version six source file

conf.h. Version seven does not support this data structure.

Instead it uses functions major(x) and minor(x) (declared in

the version seven file param.h) for fetching the major and

minor device numbers from the high order and low order bytes

of the device name. In order to reduce the number of changes

made to the original driver, the d_minor/dmajor structure

was added to the beginning of the driver software (see line

96, Appendix D).

Another difference between UNIX versions six and seven

is the byte offset, u.u offset. Thirty two bits are required

to keep track of the byte offset in a file for I/O purposes.

Since UNIX version six does not directly support "long" in-

tegers (i.e., 32 bit integer variables), it uses two sixteen

bit words to keep track of the byte offset in a file, These

two words are u.uoffset[0] and u.u offset[l]. UNIX version

seven does support long integers. Therefore, under version

seven, u.uoffset is one variable declared as type long, As

a result, all occurences of u.uoffset[0] and u.uoffset[1]

in the original driver were changed to u.uoffset for com-

patability with UNIX version seven (see lines 469 and 473,

Appendix D).

Two changes were made to the UNIX version six cdevsw

120V

. ". . . , . ' "

structure; (1) a new element, d_stop, was added to the struc-

ture and (2) the dsgtty element was changed to dioctl,

These two changes affected the device driver software because

the driver's vgdev table is declared as a cdevsw structure

(see line 538, Appendix D). Since the dstop element is not

utilized by the driver a zero was placed in its position as

a place holder in the vgdev table (see lines 539-542, Appen-

dix D). The driver's only reference to the d sgtty element

of the vgdev table was changed to reference d ioctl instead

(see line 631, Appendix D).

Summary

Installation of a new version of UNIX which has an over-

lay capability is planned for AFIT's PDPll/60. This will

relieve the limited space problem somewhat. At that time

the level one graphics could be added back to the driver.

The ability to support more systems software will allow for

future expansion of the driver software to support other in-

put devices such as the light pen, joy stick, and control

dials.

The differences betwen UNIX versions six and seven did

not cause any major changes to the original driver software.

Nevertheless, a lot of research was required in order to

understand the differences that affected the driver software.

Once the driver source code was updated, it was compiled

and installed on the system. The next chapter describes the

installation procedures in detail.

121

VIII Installing the VG Device Driver

The document entitled "Regenerating System Software"

provides a general guideline for installing device drivers

under the UNIX version seven operating system (Ref 4:6-9).

The instructions in the document, together with a few modi-

fications and additions, were used to install the VG device

driver on AFIT's PDPll/60 computer.

Before the VG device driver could be installed, the

system configuration had to be changed to make room. The

existing system configuration at AFIT includes device drivers

for the RK07 disk drives, the system console, and the time

sharing terminals. This is the minimum configuration needed

to support a multi-user, time shared environment. Unfortunately,

this minimum configuration approaches the maximum size allowed

for the UNIX operating system object file. The maximum

allowable size is specified as 49,152 bytes (see line 57,

Appendix E). In order to install the VG driver and remain

within the size limit, something had to be removed from the

current configuration. Since the RK07 disk drives and the

system console are indespensable, the only thing that could be

removed was the dhll driver for the time sharing terminals.

This means that in order to use the VG graphics device, the

system must be degraded from multi-user to single user mode.

This undesirable situation will be remedied in the near future

with the installation of a new version of UNIX that provides

an "overlay" capability. This capability will allow a larger

122

UNIX object file which, among other things, will support more

device drivers.

The VG device driver was installed under UNIX version

seven by performing the following eight steps.

1. Create the special files.
2. Relocate the driver source files.
3. Produce and archive the driver object file.
4. Edit the character device switch table.
5. Edit the interrupt vector file.
6. Produce the UNIX object file /unix.vg.
7. Restore the changed UNIX files.
8. Reboot the system from /unix.vg.

The remainder of this chapter is devoted to a detailed

description of these eight steps. Figure 24 includes all the

files and commands used during driver installation and identi-

fies their location in the root file system. Use of these

files and commands will be explained as the eight installation

steps are described. A description of what was done to remove

the dhll driver for the time sharing terminals will also be

given.

Creating the Special Files

Character oriented special files for the four VG minor

devices were created via the system command mknod(l). The

following system commands were executed to create the four

special files.

1. # cd /dev
2. # /etc/mknod gpu c 22 0
3. # /etc/mknod dtb c 22 1
4. # /etc/mknod kbd c 22 2
5. # /etc/mknod fss c 22 3

123

dev etc Sys nxv

gpu mknod
dtb
kbd
fs s

h dev conf Sys

vg.h 1182_1 c.c
LIB2_i.save c.c.save
LIB2_i.vg c.c.vg
vg.c 1.S

1 .s.good
1 .S.vg
makefile
mkdev i
unix 1
unix-I.save
unix-i.vg

4g nfla

vg_conf.uload

Fig 24. Location of Relevent Files and Commands

12~4

The system expects all character oriented special files

to reside in the directory /dev. Therefore, the first command

executed changed the current directory to /dev. Next, on

lines 2-5, the four special files were created with the mknod

command, which resides in the /etc directory.

The mknod command accepts four input parameters. The

first parameter specifies the name of the special file to be

created. The second parameter indicates that the file is

character oriented as opposed to block oriented. The third

and fourth parameters specify the file's major and minor

device numbers respectively.

The mknod command uses the first input parameter to create

a directory entry in /dev for the special file. Next, the

mknod command creates an "inode" entry for the special file

and stores it in the disk inode table (Ref 10:18-2). The file

type (-character in this case), major device number, and minor

device number represent the file's characteristics. These

characteristics are stored in the file's disk inode entry for

later reference.

Appendix F contains a listing of directory /dev before

execution of the mknod commands, a listing of the mknod

commands, and a listing of /dev after execution of the mknod

" commands. The latter listing verifies the creation of the

four special files.

The complete path names for the four special files are

/dev/gpu, /dev/dtb, /dev/kbd, and /dev/fss. These complete

pathnames are cited in user programs when referencing the VG

125

.1, ..; l

graphics processing unit, data tablet, keyboard, and function

switches respectively.

After creating the special files, their access modes

were updated with the chmod(l) system command to allow all

user programs to read and/or write them (Ref 5:13-14). The

following list of commands were executed to accomplish this

task.

T . # chmod +rw /dev/gpu
2. # chmod +r /dev/dtb
3. # chmod +r /dev/kbd
4. # chmod +r /dev/fss
5. #

The special file associated with the VG graphics pro-

cessing unit was given both read and write permissions, while

the special files associated with the VG input devices were

only given read permission.

Relocating the Driver Source Files

As stated by Haley and Ritchie, "the source and object

programs for UNIX are kept in four subdirectories of /sys"

(Ref 4:6). These four subdirectories are h, dev, conf, and

sys. A complete listing of the contents of these subdirec-

tories is given in Appendix G.

The subdirectory h contains header files which are picked

up (via '#include ...') as required by each system module

(Ref 4:7). These header files all end in '.h'. They contain

global declarations needed by system modules (Ref 10:1-3).

The VG device driver program obtained from the University of

126

Texas included a header file named initll.h. To maintain

UNIX system standards, this file was renamed vg.h and was

moved to subdirectory h. The resulting pathname for the file

was /sys/h/vg.h.

The dev subdirectory consists mostly of device driver

source files that all end in '.c'. The VG device driver

source file, vg.c, was moved to the dev subdirectory. The

resulting path name for the file was /sys/dev/vg.c.

Subdirectory conf is concerned with device configuration

and will be described later in detail. Subdirectory sys con-

tains the rest of the system and has nothing to do with device

driver installation.

Producing and Archiving the Driver Object File

The directory /sys/dev contains two libraries, LIB2_i

and LIB2 id, which contain all the device driver object files.

LIB2_id is used with separate instruction and data (I and D)

space CPUs while LIB2_i is used with non-separate I and D

space CPUs, such as AFIT's PDPll/60. An object file for the

VG driver was produced and archived in LIB2_i.

Before altering LIB2_i, an original copy of it was placed

in LIB2_i.save. This guaranteed that LIB2_i could always be

restored to its original state from LIB2_i.save.

In order to make room for the VG driver in the final

UNIX object file, /unix.vg, the dhll driver object file had

to be removed from LIB2_i. This was accomplished with the

archive system command, ar(l). The command line

127

ar d LIB2_i dh.o

deleted the dhll driver object file from library LIB2_i.

Next, a shell procedure (i.e. an executable file con-

taining system commands) named mkdev i was invoked to compile

the VG driver source file and archive the resulting object

file in LIB2_i. The following listing of mkdev i reveals the

commands executed by the UNIX shell program when mkdevi is

invoked.

1. # cat /sys/conf/mkdev i
2. echo cp ../h/parami.h ../h/param.h
3. cp ../h/parami.h ../h/param.h
4. cd ../dev
5. touch junk.o
6. rm *.o
7. cc -c -o $i.c
8. cc -c -o $2.c
9. cc -c -o $3.c

10. cc -c -o $4.c
11. cc -c -o $5.c
12. cc -c -o $6.c
13. ar rv LIB2 i *.o
14. rm *.o
15. #

Line four changes the current directory to /sys/dev where

all the driver source files reside. Lines seven through

thirteen allow mkdev i to compile and archive up to six device

driver source modules at once (Ref 4:8). The '.c' extension

.required by the C compiler is automatically appended to the

input files.

The following command stream was invoked to compile

and archive the VG device driver in library LIB2_i.

128

1. # cd /sys/conf
2. # cp /sys/dev/vg.c /sys/dev/vg
3. # mkdev i vg
4. cp ../h7parami.h ../h/param.h
5. a - vg.o
6. # rm /sys/dev/vg
7. # cp /sys/dev/LIB2_i /sys/dev/LIB2_i.vg
8. #

The first command changed the current directory to /sys/

conf where mkdev i resides. On line two a copy of the VG

driver source file was made in /sys/dev/vg. This was done

because mkdev i expects no '.c' extension on its input para-

meters. Mkdevi was invoked on line three with file

/sys/dev/vg as the input parameter. Line five is a message

indicating that the VG driver object file, vg.o, was success-

fully added to LIB2_i. On line seven a copy of the updated

LIB2_i was saved in LIB2_i.vg.

Editing the Character Device Switch Table

The system's character device switch table (cdevsw) is

contained in the file c.c which resides in the device con-

figuration directory /sys/conf. A complete listing of file

c.c is given in Appendix C.

Each row in the cdevsw table is reserved for a parti-

cular character type device driver. The ordinal position

of the row in the table implies the device's major device

number, starting from 0 (Ref 4:9).

A row in the cdevsw table gives all the information

the system needs to know about a particular device driver.

129

.. J.A

As stated by Haley and Ritchie,

"For character devices, each line in the
table specifies a routine for open, close,
read, and write, and one which sets and
returns device-specific status If
there is no open or close routine,
'nulldev' may be given; if there is no
read, write, or status routine, 'nodev'
may be given. Nodev sets an error flag
and returns." (Ref 4:9)

The system expects the name for the open routine to be

in column one, the close routine in column two, the read

routine in column three, the write routine in column four,

and the status routine in column five.

Before altering the file /sys/conf/c.c, a copy of it

was made in the file /sys/conf/c.c.save. This was done so

that the original /sys/conf/c.c could always be restored to

its original content from /sys/conf/c.c.save.

The names of the VG device handler routines (vgopen,

vgclose, vgread, vgwrite, and vgioctl) were added as row 22

at the end of the existing cdevsw table (see line 77,

Appendix C). Thus, the number 22 became the major device

number for the VG graphics device. This explains why the

number 22 was specified as the major device number when

*creating the special files associated with the four VG minor

-devices.

The code

int vgopen), vgcloseo, vgread), vgwrite(, vgioctl();

was added to file /sys/conf/c.c t. declare the VG driver

130

I M I.r... ..- *

routines to be of type integer (see line 51, Appendix C).

Comments were added to the beginning of the file to indicate

that the VG device handler had been added (see lines 1-11,

Appendix C).

The routines for the dhll driver were removed from the

cdevsw table. These entries were replaced with 'nodev' and

'nulldev' as needed (see line 59, Appendix C). Also, the

line declaring the type of the dhll driver routines was

deleted. A copy of the updated file /sys/conf/c.c was saved

in /sys/conf/c.c.vg.

Editing the Interrupt Vector File

The file l.s, which resides in the /sys/conf directory,

contains the system's device interrupt vectors. A complete

listing of the file l.s is given in Appendix B. The interrupt

vector for the VG device was added to this file.

Before altering the file l.s, a copy of it was made in

the file /sys/conf/l.s.good. This guaranteed that l.s could

be restored to its original state from l.s.good.

The interrupt vector for the VG device begins at loca-

tion 374 (octal). When the VG interrupts the PDPll CPU,

the program counter (PC) is loaded with the value stored at

location 374, while the processor status (PS) word is loaded

with the value stored at location 376. The assembly language

code

.= ZERO+374
vgint; br7

131

m /.. . .. " ,, ,m -" - I,.. -',

was added to the file l.s to store the appropriate values at

locations 374 and 376 (see lines 60-61, Appendix B).

The assembly language code

.global _vgint
vgint: Jsr rO, call; jmp _vgint

was added to file l.s to provide the capability of calling the

VG device interrupt handler routine (lines 83-84, Appendix B).

The interrupt vectors for the dhll and dmll drivers

were removed from the file l.s. The dmll driver is used for

modem devices and is directly coupled to the dhll driver.

After removing the dhll driver, the dmll interrupt vector was

no longer needed. A copy of the updated file /sys/conf/l.s

was saved in /sys/conf/l.s.vg.

Producing the UNIX Object File /unix.vg

A new object file for the UNIX operating system was

created with the make(l) system command. This command can be

used to recompile the entire system from scratch or to re-

compile individual source modules and install them in the

correct libraries (Ref 4:7, and 5:11). The latter method

was used for installing the VG device driver software.

The form of the command used was "make unix60". The

input parameter unix60 indicates that only certain source

modules were to be recompiled and that the CPU type was 60

(for the PDPll/60).

The make(l) command looks within the current directory

for a file named "'makefile". This file is used as input

132

to the make(l) command. The file /sys/conf/makefile is the

input file needed for regenerating the system (Ref 5:11).

A complete listing of this file is given in Appendix E.

The following command stream was used to execute "make

unix60" and copy the resulting UNIX object file to /unix.vg.

1. # cd /sys/conf
2. # make unix6O
3. convert l.s 1_i.s
4. cp l.s 1 i.s
5. done converting 1 i.s
6. as -o 1 i.o 1 i.s
7. as -o mch i.o mchO.s mch i.s
8. cp ../h/parami.h ../h/pa-ram.h
9. cc -c -o c.c

10. mv c.o c i.o
11.
12. The output file will be named unix i !!!!
13.
14. ld -o unixi -x 1i.o mchi.o ci.o ../sys/LIBl_i

/dev/LIB2 i
15.
16. if size of unixi > 49152 bytes, UNIX IS TOO

BIG !!!!!
17.
18. Size of unix i is tEXT+DATA+BSS = TOTAL
19.
20. Size unix i
21. 33638+1919+13312 = 48868b = 0137344b
22. rm *.o
23. # cp unixi /unix.vg
24. #

First, the current directory was changed to /sys/conf

so that the appropriate "makefile" would be used. Next,

.- I"make unix60" was invoked on line two. Lines 3-22 are

messages printed during successful execution of the command.

The messages indicate what the command was doing.

Basically, the files /sys/conf/l.s, /sys/conf/mch0.s, and

/sys/conf/mchi.s were assembled; the file /sys/conf/c.c was

133

compiled; then all the resulting object files were loaded

r(along with /sys/sys/LIBli and /sys/dev/LIB2_i) into an
output object file name /sys/conf/unix i. Next, the size

of the object file /sys/conf/unixi was computed to see if

it exceeded 49,152 bytes (the maximum size allowed for a

UNIX object file). Finally, on line 22, all the files in

the directory /sys/conf that ended in '.o' were removed.

This was a cleanup step which removed all intermediate object

files created during execution of "make unix6O".

On line 23 the UNIX object file /sys/conf/unix i was

copied to the root directory and given the name unix.vg.

Restoring the Changed UNIX Files

The original contents of UNIX files /sys/conf/l.s,

/sys/conf/c.c, and /sys/dev/LIB2_i were changed in order to

create the new UNIX object file, /unix.vg. A shell procedure,

or script file, named /sys/conf/vgconf.unload was created

to restore the original contents of these files after creating

the new UNIX object file, /unix.vg.

The script file was created by first using the editor

to build a file of system commands, then flagging the file

as an executable shell program with the chmod(l) system

.command (Ref 2:5).

A complete listing of /sys/conf/vg_conf.unload is given here.

1. # cat /sys/conf/vg_conf.unload
2. echo cp /sys/conf/c.c.save /sys/conf/c.c
3. cp /sys/conf/c.c.save /sys/conf/c.c
4. echo
5. echo cp /sys/conf/l.s.good /sys/conf/l.s

I

134

6. cp /sys/conf/l.s.good /sys/conf/l.s
7. echo
8. echo cp /sys/conf/unixi.save /sys/conf/unixi
9. cp /sys/conf/unix_i.save /sys/conf/unix_i

10. echo
11. echo cp /sys/dev/LIB2 i.save /sys/dev/LIB2 I
12. cp /sys/dev/LIB2_i.save /sys/dev/LIB2_i
13. echo
14. echo Finished unloading the configuration for

the VG3404 !!
15. #

This script is executed by typing its file name, /sys/conf/

vg_conf.unload, at the system prompt. It restores the original

contents of the UNIX files by copying from the appropriate

save files.

Rebooting the System from /unix.vg

To use the VG Graphics Display System, the PDPll/60

must be rebooted using the /unix.vg object file. A complete

list of commands needed to reboot the system is given in

Appendix H. These commands must be executed from the system

console. When using this command stream it is assumed that

the system is in multi-user mode and that the system console

is logged in as the "root" executing a function that monitors

system usage. First, the system is taken down from multi-user

time sharing mode, then it is rebooted from /unix.vg.

.Summary

This chapter presented a complete description of how to

install the VG device driver software on the PDPll/60 under UNIX

version seven. The device driver software testing methodology

is described in the next chapter. All of the test programs and

results are included.

135

IX Software Testing

A few short C-language programs were written to test

some of the features of the system. This testing was by no

means comprehensive.

The testing methodology used was a combination of pro-

gram path analysis and "black box" testing. The test pro-

grams were written to exercise most of the major program

:1 paths of the device driver software. These paths were taken

directly from the structure chart in Figure 21 (see page 79

Chapter VI). When the test programs were executed, data was

input to the system for which a known output was expected.

The actual output was checked against the desired output to

verify that the driver software worked properly. With this

testing approach, the driver software was treated as a "black

box". In other words, the inner workings of the driver soft-

ware were not observed directly.

The major program paths were tested by writing test pro-

grams for each of the VG minor devices. The remainder of this

chapter is devoted to a description of the tests performed and

their results.

GPU Tests

The open(2), closeC2), stty, and gtty system calls were

tested on the gpu minor device. The objective was to verify

that VG registers could be read and written by a user program

and that the GPU could fetch and execute a user display list

from the host computer.

136

The first test performed was to open the GPU minor

device, write a value to a VG register, read the same register,

print the value read, then close the GPU minor device. The

code for the test routine and the execution of the test are

listed below.

1. # cat gputestl.c

2. main()
3. { int fdgpu, buf[3);

4. fdgpu = open("/dev/gpu",2);
5. buf[0] = 012;
6. buf[l] = 045;
7. stty(fdgpu,buf);
8. gtty(fdgpu,buf);
9. printf("%o\n", buf[O]);

10. close(fdgpu);
11. 1
12. #
13. #cc gputestl.c
14. #a.out
15. 45
16. #

Lines 2 through 11 are a listing of the test routine.

The routine was compiled on line 13 and executed on line 14.

The output was printed on line 15.

In this test the value 45 was written into the VG's

picture base object (PBO) register (see lines 5-7), then the

PBO register was read to verify that it contained the value

45. The output on line 15 verified that the test was suc-

cessful. When the PBO register was written (line 7), buf[O]

contained the PBO register's address. When the PBO register

was read (line 8), buf[0] got changed to the value read.

The same test was performed on the VG's directory (DIR)

register. The value 45 was first written to the DIR register,

then the DIR register was read. The result was 44 instead

137

_M ,

of the expected 45. Later, it was discovered that this was

not a device driver software error. The VG's DIR register

contains logic that converts all odd values to even values.

This is done because the directory address stored in the DIR

register must begin on a word boundary instead of a byte

boundary in computer memory. When even values are written to

the DIR register the same values are returned when the register

is read.

The next test performed was to verify that the GPU could

fetch and execute a user display list stored in the host com-

puter. The display list used was taken f:'rom the VG System

Reference Manual (Ref 18:4-3). This particular display list

contains the instructions needed to draw an equilateral tri-

angle (Ref 18:4-2). The code for the test routine and execu-

tion of the test are listed below.

1. # cat tri.c
2. main()
3. {int fdgpu, directry[lO], object[50];
4. int stack[200], buf[3];
5. directry[O] = 01;
6. directry[1] = object;
7. object[O] = 01;
8. object[l] = 0140150;
9. object[2] = 0140000;

10. object[3] = 0140000;
11. object[4] = 0040000;
12. object[5] = 0140000;
13. object[6] = 0;
14. object[73 = 0040000;
15. objectt8] = 0140000;
16. object[9] = 0140001;
17. object[lO] = 0010000;
18. fdgpu = open ("/dev/gpu", 2);
19. buf[O] = 01;
20. buf[l] = stack;
21. stty(fdgpu,buf);
22. buf[O] = 02;

138

* -

23. bufrl] = stack+63;
24. stty(fdgpu,buf);
25. buf 0] = 0;
26. buf[l] = directry;
27. stty(fdgpu,buf);
28. buf[0] = 012;
29. buf[l] = 01;
30. stty(fdgpu,buf);
31. buf[0] = 010;
32. buf[l] = 0401;
33. stty(fdgpu,buf);
34. buf 0] = 07;
35. buf[l] = 0160134;
36. stty(fdgpu,buf);
37. close(fdgpu);
38. }
39. # cc tri.c
40. # a.out
41. GPU interrupt [12] - 130022 73257
42. #

Lines 2 through 38 are the code for the test routine.

Lines 5 and 6 set up the directory required for the display

list, while lines 7-17 set up the display list itself. Lines

19-21 store the beginning stack address in the VG's stack

base address (STB) register. Lines 22-24 store the ending

stack address in the VG's stack limit address (SLM) register.

Lines 25-27 store the directory address in the VG's directory

address (DIR) register. Lines 28-30 store the object number

of the base picture in the VG's picture base object (PBO)

register. Lines 31-33 load the VG's control (CTL) register,

while lines 34-36 load the VG's command (CMD) register.

*Once the CMD register is loaded, the GPU is directed to fetch

and execute the display list stored in the array named "object".

The test routine "1tri.c" was compiled and executed on

lines 39-41. The result was an interrupt generated by the GPU

with state code 12 (see line 41). State code 12 means that

139

an invalid picture base object or directory structure caused

the interrupt (Ref 18: Appendix B2). One probable cause of

this error is an invalid base address stored in the Hardware

Interface's Base Address Register (BAR). This would cause

all virtual addresses to be mapped to incorrect physical

addresses. If this was the problem, then the GPU used an

erroneous physical address to fetch the user's directory in-

formation and found an invalid directory structure stored

there.

The way to discover if the Interface's BAR is being

loaded with the correct address is to write a user program

that performs the same address mapping that the Interface per-

forms (Ref 19:13). When performing the address mapping, use

the same base address that the driver software loads into the

Interface's BAR. The program should first store some pre-

determined value in a known location. Next the program maps

the known location's virtual address to a physical address

using the same base address and address mapping algorithm

used by the Hardware Interface. Finally, the program fetches

the contents of the calculated physical address to see if it

is the predetermined value that was stored there in the be-

ginning. If it is, then the error occuring in the driver

software was probably not caused by the Hardware Interface's

address mapping. On the other hand, if the value fetched is

not the same as the value stored then the base address used

during the address mapping was erroneous. If this is the case,

then the User Instruction Space Address (UISA) Registers have

140

* t

probably been changed between UNIX versions six and seven.

In that case, the driver software would have to be changed

to load the Interface's BAR from the correct UISA register.

Data Tablet Tests

The open(2), read(2), and close(2) system calls were

tested on the data tablet minor device. The objective was

to verify that a user program could read the VG's data tablet

registers and that a user program could select which of the

four types of data tablet interrupts it would recognize.

The first test performed was to open the data tablet

minor device, mask out all data tablet interrupts except those

generated by the pressure switch on the data tablet stylus,

read the data tablet minor device, then close it. The code

for the test routine and the execution of the test are listed

below.

1. # cat dtb.c
2. main()
3. {
4. int fdgpu, fddtb, n, buf[50];
5. fdgpu = open("/dev/gpu",2);
6. fddtb = open("/dev/dtb",2);
7. buf[0] = -5;
8. buf[l] = 01;
9. stty(fdgpu,buf);

10. n = 0;
11. while (n<l) n=read(fddtb, &buf, 1);
12. printf("Flag = %o, X = %d, Y = %d\n", buf[l], buf[2]);

" 13. close(fddtb);
14. close(fdgpu);
15. 1
16. #
17. #
18. # cc dtb.c
19. # a.out
20. Flag = 1, X = 3, Y = 41
21. # a.out

141

22. Flag = 1, X = -377, Y = 441
23. # a.out
24. Flag = 1, X = -408, Y = -319
25. # a.out
26. Flag = 1, X = 369, Y = -318
27. #

Lines 5 and 6 open the GPU and data tablet minor devices.

Lines 7 through 9 select the pressure switch interrupt (PRS)

only. Lines 11 and 12 read and print one X-Y coordinate pair

from the data tablet and the type of interrupt that generated

the pair. Lines 13 and 14 close the data tablet and gpu

minor devices.

Lines 19 through 26 contain the results of four different

executions of the test routine. For each test, the author

used the data tablet stylus to generate all the different

types of interrupts available on the data tablet, i.e., XOS,

YOS, PNN, and PRS (Ref 17:2-83). The phrase "Flag = 1" on

each line of the output (lines 20, 22, 24, and 26) verifies

that only the X-Y coordinate pairs generated by the PRS in-

terrupt were passed to the test program.

For the next test, lines 7-9 of the data tablet test

program were omitted. This meant that X-Y coordinate pairs

generated by any of the four data tablet interrupts could be

read by the test program. Four different executions of this

.test program and the resulting output are listed below.

1. # cc dtb.c
2. # a.out
3. Flag = 2, X=ll, Y=75
4. # a.out
5. Flag = 1, X=413, Y=474
6. # a.out

142

* . j

7. Flag = 4, X=125, Y=512
8. P a.out
9. Flag = 8, X=512, Y=-305

10. #

In the first execution (lines 2-3), "Flag = 2" indicates

that the X-Y coordinate pair was generated by a PNN interrupt.

For the second, third, and fourth executions, the X-Y coordi-

nate pairs were generated by the PRS, YOS, and XOS interrupts

respectively.

For all of the above data tablet tests the device driver

software performed correctly. Therefore, the objective of the

data tablet tests was met.

Keyboard Tests

The open(2), read(2), and close(2) system calls were

tested on the VG's alphanumeric keyboard minor device. The

objective was to verify that a user program could read data

from the VG's alphanumeric keyboard input device.

A short test program was written to read and print out

fourteen characters from the VG's alphanumeric keyboard. The

test program and three different executions of the test are

I listed below.

1. # cat kbd.c
2. main()
3. i nt i, fdgpu, fdkbd, n, buf[50];
4. fdgpu = open("/dev/gpu",2);
5. fdkbd = open("/dev/kbd",2);
6. for (i=l; i<=14; i++) {
7. nmo;
8. while (n<l) n=read(fdkbd,&buf,l);
9. printf("%c",buf[O]);

10. 1
11. printf("\n");

143

12. close(Idkbd);
13. close(fdgpu);
14. 1
15. # cc kbd.c
16. # a.out
17. this is a test
18. # a.out
19. This is a TEST
20. # a.out

21. 123456789{! ? < >
22. #

Lines 2-14 are the test program while lines 16-21 are

three different executions of the test program. The first

and second executions (lines 16-19) verified that both upper

and lower case letters were read successfully. The third

execution (lines 20-21) verified that numeric and other special

characters were read successfully. Therefore, the objective

of this test was met.

Function Switch Box Tests

- I The open(2), read(2), and close(2) system calls were

tested on the VG's function switch box minor device. The

objective was to verify that a user program could read values

from the VG's function switch box input device.

A test program was written to read one value from the

function switch box. The test program and four executions

of the test are listed below.

1. # cat fss.c
2. main()
3. {
4. int fdgpu, fdfss, n, buf;
5. fdgpu = open("/dev/gpu',2);
6. fdfss = open("/dev/fss",2);
7. n = 0;
8. while (n<l) n=read(fdfss, &buf, 1);

144

9. printf("function switch = %dn", buf);
10. close(fdfss);
11. close(fdgpu);
12. }
13. # cc fss.c
14. # a.out
15. function switch = 1
16. # a.out
17. function switch = 15
18. # a.out
19. function switch = 25
20. # a.out
21. function switch = 31
22. #

Line 2-12 are a listing of the test program. Lines 14-21

contain four different executions of the test program. For

each execution of the test program the author verified that the

value printed was the number of the function switch that was

depressed. Therefore the objective of the function switch

box tests was met.

Summary

Most of the major features of the system were tested.

Except for the direct memory access test performed on the GPU

minor device, all tests performed on the device driver soft-

ware were successful. This testing concluded the author's

research. Conclusions and recommendations are presented in

the next chapter.

145

X Conclusions and Recommendations

The UNIX operating system provides a straight-forward

interface to peripheral device driver software. This inter-

face allows for the addition of any number of peripheral

devices to the system. The limiting factor is the amount of

memory available for the operating system. This was a major

problem with AFIT's PDP 11/60. Space was so limited that the

VG graphics display system could only be used while the PDP

11/60 was in single user mode. This unacceptable situation

can be remedied with the newer version of UNIX which has a

memory overlay capability. This capability will allow the

operating system to support more device drivers.

The differences between UNIX versions six and seven were

transparent to the common user but not to the systems pro-

grammer. Therefore, a computer installation that upgrades to

a later version of UNIX may have to convert some of their

device driver software. Many changes had to be made to

McCallum's original driver before it would run under UNIX

version seven.

The fact that UNIX is written in a High Order Language

(HOL) such as "C" is a real asset. This aids the systems

4 -programmer immensely in understanding and maintaining the

system. It is also very convenient to be able to write the

device driver software in the same HOL. The C programming

language has many features which lend to systems programming,

e.g., pointers and structures.

146

McCallum's design for the VG device driver was straight-

forward and easy to understand. He used a top down modular

approach which allows for easy expansion of the driver soft-

ware. This was shown by the easy addition of the data tablet

minor device to the driver software.

The apparent problem with direct memory access must be

solved before the system is useful. First, the cause of the

problem must be identified, then corrected. A probable

cause of the problem and a possible solution were identified

in Chapter IX.

Many worthwhile projects could stem from the research in

this thesis. One project would be to implement a time-out

capability when reading from the VG input devices. In other

words, if no input data is available when a user program reads

a VG input device then the user program should be put to

"sleep" for a short time to wait for data to be input from

the device.

The author attempted to implement the time-out feature

using the alarm(2), pause(2), and signal(2) system calls.

The attempt was aborted when it was discovered that the header

file required by the signal(2) system call (signal.h) was not

available on AFIT's system. The following three lines of code

show how the time-out would have worked using the three

system calls.

1. alarm(n);
2. pause();
3. (*signal(SIGALRM,SIGIGN))();

147

The author intended to have the device driver execute this

code if no data was available when a user program attempted

to read a VG input device. Line 1 tells UNIX to send an

alarm signal to this process after n seconds have elapsed.

Line 2 causes the driver to stop execution to wait for a

signal. Line 3 catches the alarm signal sent by UNIX after

the n seconds have elapsed. After the alarm signal is

caught the device driver resumes execution. This would have

been an easy way to implement the time-out feature. Since

the file /sys/h/signal.h was not present on the system, the

time-out feature could not be done with the alarm(2), pause(2),

and signal(2) system calls. Nevertheless, a time-out feature

could be programmed in other ways.

Another possible project would be to enhance the input

capabilities of the VG's alphanumeric keyboard input device.

Currently the device driver only supports the "raw" mode of

input from the keyboard. That is, no special meaning is

assigned to any input character received from the VG's key-

board. The device driver could be changed to support "cooked"

input from the VG keyboard. That is, control characters input

from the VG's keyboard could be detected by the device driver

and handled in a special way. Another project in this area

would be to echo the keyboard characters to the VG's display.

Perhaps the most worthwhile project is the implementa-

tion of a high level device-independent graphics software

package on the system. McCallum's level two graphics soft-

ware (Ref 12) is readily available. It may have to be modi-

148

fied a little to be compatible with UNIX version seven's

version of device driver software.

Another graphics software system such as Lawrence

Livermore's Grafcore/Graflib (Ref 6) could also be imple-

mented. In this case a BASELIB would have to be generated

to define the UNIX/Graflib interface. Next a filter would

have to be written to convert the device independent display

list that Graflib produces into a display list that can be

processed by the VG display system.

Many more worthwhile thesis projects could be undertaken

to develop AFIT's computer graphics capabilities. The field

is wide open and the options are virtually limitless.

iI

1149

IM

Bibliography

1. Bell Telephone Laboratories. UNIX Time-Sharing System;
UNIX Programmer's Manual, 1. Murray Hill: Bell Tele-
phone Laboratories, Inc., January 1979.

2. Bourne, S. R. "An Introduction to the UNIX Shell,"
UNIX Programmer's Manual, 2A. Murray Hill: Bell Tele-
phone Laboratories, Inc., January 1979.

3. Bourne, S. R. "The UNIX Shell," The Bell System Techni-
cal Journal, 57 (6): 1971-1990 (-July-August 197BY.

4. Haley, Charles B. and Dennis M. Ritchie. "Regenerating
System Software," UNIX Programmer's Manual, 2A.
Murray Hill: Bell Telephone Laboratories, Inc.,
January 1979.

5. Haley, Charles B. and Dennis M. Ritchie. "Setting Up
UNIX - Seventh Edition," UNIX Programmer's Manual, 2A.
Murray Hill: Bell Telephone Laboratories, Inc.,
January 1979.

6. Keller, Pete, et al. GRAFLIB Reference Manual. Liver-
more: Lawrence Livermore Laboratory, October 1980.

7. Kernighan, Brian W. and Dennis M. Ritchie. The C Pro-
gramming Language. Englewood Cliffs: Prentice-Hall,
Inc., 1978. _

8. Kernighan, Brian W. "A Tutorial Introduction to the UNIX
Text Editor," UNIX Programmer's Manual, 2A: 54-64.
Murray Hill: Bell Telephone Laboratories, Inc.,
January 1979.

9. Kernighan, Brian W. "UNIX for Beginners - Seventh
Edition," UNIX Programmer's Manual, 2A: Murray Hill:
Bell Telephone Laboratories, Inc., January 1979.

10. Lions, J. A Commentary on the UNIX Operating System.
Kensington: Department of Computer Science, The Uni-
versity of New South Wales, June 1977.

11. Lions, J. UNIX Operating System Source Code, Level Six.
Kensington: Department of Computer Science, The Univer-
sity of New South Wales, June 1977.

12. McCallum, Douglas Roland. A Machine-Independent Inter-
active Computer Graphics System. MA thesis. Austin,
Texas: The University of Texas at Austin, May 1980.

150

13. Ritchie, D. M. and K. Thompson. "The UNIX Time-Sharing
System," UNIX Programmerts Manual, 2A: 23-38. Murray
Hill: Bell Telephone Laboratories,-Tnc., January 1979.

14. Ritchie, Dennis M. "The UNIX I/O System," UNIX Program-
mer's Manual, 2A. Murry Hill: Bell Telephone Labora-
tories, Inc., January 1979.

15. SIGGRAPH. "Status Report of the Graphic Standards
Planning Committee," Computer Graphics, A Quarterly
Report of SIGGRAPH-ACM, 13 (3). (August 1979).

16. Thompson, K. "UNIX Implementation," UNIX Programmer's
Manual, 2A. Murray Hill; Bell Telephone Laboratories,
Inc., January 1979.

17. Vector General. Graphics Display System Model 3404
Programming Concepts Manual. Publication number 113489.
Woodland Hills: Vector General Inc., July 1978.

18. Vector General. Graphics Display System Model 3404
System Reference Manual. Publication number MlI0700REF.
Woodland Hills: Vector General Inc., August 1978.

19. Vector General. PDPll Interface Specifications. DE41
reference manual. Woodland Hills: Vector General Inc.

20. Vector General. Series 3400 Technical Manual, Volume 1.
Publication number M110700. Woodland Hills: Vector
General Inc., March 1978.

151

Appendix A: Listings of UNIX Source Files
/sys/h/proc.h and /sys/h/user.h

The two UNIX Source Files contained in this appendix

were printed on the PDPII/60 system. The following two com-

mand lines were invoked to print the files on a teletype

terminal.

1. # printit </sys/h/proc.h
2. # printit </sys/h/user.h

The program "printit" was written to print the input file

with line numbers added. The source code for this program is

listed below.

printit <printit.c
01 #include "/sys/h/stdio.h"
02 #define MAXLINE 133
03 main()
04 { register int i;
05 char *temp[133];
06
07 for (i=l;fgets(temp,MAXLINE,stdin);

i++) {
08 fprintf(stdout,"%5.5d 1i);
09 fputs(temp,stdout);

0101
011 1

The prinit program was used to print all of the source

file listings in Appendices A-E.

152

(4 "4 4ca

001'- 60 u d 4c.4 3 4
C: 04 >% 0 44 1

.C -L D(1 0-

63-4* r- 41 ~ 0-4 " o
"4 to QjC CC.0@L C

(A Ai 4 - -3 4 ~ 00
"4r .- u 4c to a14 to .4

@3 aJ@30 C a @3. c qu r. '

V 00H 0 S:(V0.-4Cf $ 4 J9 4)i
41W -U C4 C C 0 @3 0 t

> c 4 w0) .$4 rCfl j&4 u0.CO@ 0 3

o. u M 0 (a 00 -0. U) $ 1-4 C:
~44-4L C (a WJC WL LU i i

.0 m . to0) 0x'-a10W.4 >

046 ~4)CL (A U 4 00E)
13 (. 0UO0~ C)I)C0) 0 U)4 0 0

p~@3 0U -WW 4J44 @ 0. U4.8

r- w3 o u) o A0-14w -40 rl

41. tom 4 4 .)r
c~ ~ ~ 0 MU w

w to4 a O
P4 co1 = 1 A)A

0 j3.4 CC E- 00 C4 a.

> (A P z P)4

@34.

to caO0.U -

.41

cn A

0 ar- t

414 % ~ - r . ~ 0 1 " - w' ' -. 7I8 .r- -4 0 .. ' Q ~ r- mA~ ~ 0 - %
0 0 0 0 0 .- 4 M- - -to-4 a4 41 u' ('4 (4j ('. (' u' ' ' ' ~C

V j4 JA WpU 000000000

C.

0 0 0153

C44

cc. U 1". 2b

00 4 .-. 0 (

JJ u5- 00)C 44c $
0d 0wc 4 r j&

1 M 00 t

W- 44 V3 CCM C-4r4 U Z :
1 0) "4 0 0

101 *-.4.1 4 4Y00 0 1014 4)c

00 A. ca 44 Q-> 4 = lD41 t " w3
00 cc 4 tobD 0 0 Ucc 0 -4C

ll 0 -4~0 -4C cW(0

r..-. a. ~ r- C . 60 u a) AJ

V - 0-0 4 to. $4 4. 4t

to0wW (4 (A M0 WCW s4J0 4 CC 0 M 44 41
a Aw4 H4 CO4.I 14 -04 Eli W

0 00 u v0 ci u41 -4. 0 -4 c 0) 0 01

0 41 4j0 -a 0C0 0 0w .400 0 WE-40

C: .,4,4 w w $,44J- c0 4vC - 0 m a,4A
r- r- o :3 $0Ur-U

CO 1 .iC OCIiWIu0 O ~ . 0..

U A1$4CC'JE C''0 W00000 --1~ Cf0E 4

0~ 0C-L

W<C<W uJ.0

cc -0'J 0)

C7% 0 0 0 w ca $4 COr_ N A
14 000 0 00

-r4 q H -4-4 4 m0 0 0

V 00.J- "V- 0*

w CN -- -4:C Ln-a.. r -4ON -4 U') C O0CUwO 0 00m0000

.,i cn~tu It -.T nUU nL X O U UCOCOiLnL L-% C No %C %

154WO

4c

...

*0

0

.C.

bl -4
to

4.4

0

M-4

c % -4

r"4 "

(A

04 91 CL

.3 x

-14

0o
f0 c O
%0% %C

u -coo
-4 4.I

A15

49.

414
co u

o c-

64 0 %

to 0 W t

CL c ."4 - 1..

4.4. 0. Gso V ... "4

0() 0 0 * "U.s4 0
" %-4 ~ wO 0 0 r-4I~

4114V co W)0
A-- (0 a) (0 14 0.0 0

.00 >) 0)co

r. 0 C *.W 41
00 c 4148 100 U0~J00w

514) Li4.) w- 40 u 'jJJ

.04 r 1000. 0. 0 1J'-4)
(fcag~ $4z 4)14 414401

0- to cc* -400 44

414 w1 ca= c 0
0 N 4 0 V -

$4 0 M $4 U AJ>)-

Q. T 0) to tz) a '

W 10 W "4 &0 J $. &S 3t w$

w w- w U> 0 1.. 0 10 1

0 0 0.- U~ M U . 0 U21
W - 4 $4 0 C) - 00 0.t A

00 00)0fN 40. ..4

$0 wV=S 4). 1.4 W 0 1 $. 0 0 0 0.w

0 r- r. 05J1 0) w -=w x t
-4 r- 4 @5 1 0.- 0.401 -4 0r AVU014 M M4.* 0.r

4.11.). 1-4 610.4. u00 x0 w)4 4 ~

Co 0 X:. 01 0 -4 CO4. u

.- 1 U4 (0 (01 r4 r- 4 0) 4 4. . .11 . . .4

14001010)0))0.0J4l1. (001564J

49

18 '1

0 4c 4cto0

-o a o 4 04.4

44 4)1. a.0 0)
4 4 W0 U 4 C

4.'0 410 -. 4 u.

00 U.C04 C:

10'- V O-0 ci4.

w c 000 w0 C - --
(4 04 -H "4 " 1 0 r=

w. 0 W 4 1 AJU -4 t U C -

*- 0. 4 W. M1.. 0 41 1. 0 0 U 0 3t 0.I 4 A43M U)
P-4 4J 4J W.GJ 44 AJ C A CO .)

- 44J 0-- ~ L 4 4 4JU 0...WWGA'
-4 4 -0 W05. 0.1 W.U0 U W .-. M to 4 4 -4W(40
CC 44 0 E 'A4 J4 FA W . n W c4 g0O0 4 W WW4 A

> . P 44 0 04C W 0 C3 W -X afU 44 44CO W 0 =0 0
0 '4.0 V1- S W 0 WJ 00,41 M 0JJ.J"J

44 0) 0 >..10JMJJ 41 r-) (-H-4 U -H 4...44 4141) .0) 44
r-4 40 w 0 c u 4-444 4 V-4 ur-4 -4 0 FAWAWC

CW0.44 Ai4j0 W 0) .t.a- 0 0 ~. 00 0 J- C-

r4 w1 00 0..-0 4 1.4"o w 00- . W.4.0 4-4 W
5).4 l Ai(a.E JI 0 M 410 W W 0 M U M QJ. 44 4 F

fA0 S4. a. r-4 --00w 4J.w. 4 00.a 0 0

C:. L, 10 C I A OU r oU

m W 4J 44 "14 0 W 4J W 0 .0 0 H CCX J 0 0410 0 .4 -4 EE r

to $4 5.-.* s L u5- - m. m r.-. P. m - co5.~

to

414
--

cc C&.

44 A -q 41 $4 "4

41 J-4 I4.i r- 0 0 cn
5.S.Ix~0 5.aU z 0C.4- l

0 4- $d5 14 $I.dJ4I 0-4 .4. %C %C J -4-4(-4 - .

-- 4 0a

41 wA t0 r' "0 '4(" ' j' . r. -H Cd -4 "4 0 $t " 'V0 0 0 0 -4 "4 V' W~ 0r

(A ' ~ ~(%C 44 r= '.4 -c 0~ -c m~ m~ -u 4) Mn wn 0. ca in wn m un un In'c' . '
&J OOOOOOO 1OO 10C0O 111C 0 C11 1 O4 1 1C1O 1

41Jl 5 4r = =0z4

157 4 4 . *
w~~ w

&j - 41 j a = 1 1 41 &j .

00 a 4 49

to 4 40 .0 .4.
0 4o 4 4 N0

to >k -4 45 4.0o c
0h C 0. W%4 0 c ==(

a. M0 5 "a-40)0 84.
41C 0.0 N -. 1 r4 04
C .. -40 -4045 4 eU0

4) 0 0. .00 Aju. 00
$4A) 4 ~ 0 0. 0 .

4t c W14 . .45 to .44. ck+4C
"0 c 41 -,-4U 00 0 04
?A C- 0044 04 :410 $4~ cc v5

54 o -.. "4 0 44 "0v A
$4 4.4 to .4 0 0 Xk~ w 0o.q 4 ,-4 A ca

to 0000 4 u w w w U ca 0 w4 00
44 .4U- 0 t k. 41 4 .0 4.0 ca Al

0.4 t&5 .- ,4tEo) 0 1 0 451.

U~1. 44 00 U C 50545

cc, 4 44 44 4 4 4 4 44 4444 w

0
-414 om 1

-V4

ow 05 E00000,-
Ai W0.- A NN=,C c $4 1

.4. 0..00 %C -wcs0 - TLn% c %0V

c'0 wC w5 w %C ,C% ,cC

CC 050 .- 45 0J J0 000 J -s~0158.

ao

.

U e

u e9 UHw= 44I

w .zwP4 z zmur.z0 - - uz w
Gos

-4 0ccccccc0cc

0-4-4-4 , H-4- 4" - 4 4" 4 4" -4 v 4" -4"
444 44 44 44 W4 4 4444 W4 44 4% 444%44- 4%4% 4%4W%
w0) 4 14)0)4 1w)w a)w 4 V0)4 U4

49Pl avclvoaOcUuVOO.O 0 III
"k4 tf tf tM hf kQ tW h4 mf-%" kIkf tf

-4C nI)% *c (10 14C n6 nDP ca 'Nm. 4 Df c N0 - 1
0 4- 4- 4. 4- -4- 4C 1 4"C Q0 4V ne

* 4W 4 4 4 - 4 4- 4 & - - 4 4P 4 4 4 v 4P 4

r4159

00

lo

Sn-I

enIn'

Sz

0-4

V4-4 v

Go

016

Appendix B: Listing of UNIX Source File
/sys/conf/l.s.vg

The UNIX source file /sys/conf/l.s.vg contains the

system call trap vector (line 31) and the VG's interrupt

vector (lines 60-61 and 83-84).

161

Go

to
A,

CCL

to

-4-1

00

A0

9: 00 to4 Q

u 0- 0 IM 4.4 0A4 1

A-I 1.8 $C4 5 r. 1

0 u c 04-40 140 0.5.H

0p A.jf >1. $ 4 towa 4
o 0 04 64

45) 0- $4 .- 445

0)r p, 0 U 0 E

445u $ 4 C: @3 W0441

eU'S cc,- 055~~

0. >0

0 .4.4 IT4

1.03 V0"
Do4 0 04

r . 0 0. + + +

411. .S1. m0

454 1 0 0..0.00-1.

-H U r.7 41 410
PC V 0 0 45 45CCUCCUCCUW

W~~ ~ CI14.. r4 000 +.-. @35544455 PC0t

'U0 &50 5.4

1-4 C4 f C'T Ul %0 1% C 0 % 0 -4 CN inS .. 0 sf co C's0 0 -4 ~dC,4 -ti II'l r.0 ccs 0 0 r4 r4 C'S
000000000--4 -4 1-4 -4 -4 -4 4 ".- '4 ('14 C4l C"4 C4 CN4 C4 " C'4 M ' C1 C'M

162

'.4

000

$44
0)0

Coi

00 0 to- 4 .-4 0 -

&4 0 4 -

0. 00C 4*

U4 A4 wi15 i

41 =4.00 -

0)M C I r- 1. n.

-4 "4 00 0 -4 o -.

0- 044 Ci 0 s

oo gulJ

00
r4 .0-

Go w-
m1. I. Lm% -wa 4C4C)IL Q a , n' n%

0 n en. Cit)eSn T . ..1' nL rL nt L r IW

163

4-4

U30. In

00

c -41-
-4to"mt

04 x
U- 4- 1$ 4 t

V)a m)

co
0%

6-CO64-4W- o31 t et

.0 . . .,.a ... a U9

la M O 0 -4 n PW0% 4 M

u- 0000 400 0co oco

La M 164

I IW
0A

Appendix C: Listing off UNIX Source File
/sys/conf/c. c. vg

The UNIX source file /sys/conf/c.c.vg contains the

system character device switch table (cdevsw). The cdevsw

table contains the addresses of the VG major device routines

(line 77).

165

-4-

to
ca

4c4

* U 4 L
-I W *fC 4

4> c 0 04

> q W -4 "4
>A > ..4 w~ 1.4

u u0w 4-4 > wA 4
*qV ow 0 1

-C 4.41

44 K a 0O 5i -
a 4$4 "n t.

u -4O = -c . 4

LA 0 ca 0 >%

CA en' cV4 4 0

ca .0 >.
4-4.4 Ci -4 M -4 -

-5 4 $4LO '-4L.-

W 00f C) "J.J
u 4 > u -4 >1Q$44

4 4c $4 w -4 $4 -M 0
* 4 *0 > 4J>O. 0

o .0 >i CJO
* a) 4 0

toI 4 = 0 I m0 -C C 3 K

r_ 4J. 4W4 4 . * = X~
-4 4C 1-4 w m cfl * : .== a. ~ j
41 4c)a m= Wo b" $ 4, 4 = c .r * -C tosw >
LA I a wV~ Aj4CI.I 4 LO J * *-4OUJJ &LC4J %.-'4)J C
V4 4c 0) .-H a)4 $4 w 4-4 > 6 0 X$4 .U _4 0

*- r- 04C = O. -4o m d $'&J 0 1- CJ.- 14 -rA " r- U b0

4c -H C 4) X X xs-C r- xxw
it 0) C4 w *% , --4 -- > 54 MA

4 0(00 z -x 0 0 a *0
4.4 V A 41 >%t4 $4 14*r

cc .1c 0)(a > 0 -4K Q)) aWWW)wW a)w a;

44 ~ V WU-41C4J.
4cl *41 to6 CC :3 itK -4-4 -4 -4 -4--4 -4 Ut.u

L44 4M 4 -H -H ". -H.4AL1

m- ~. ' 0r C% 0 NC14 m~ U1 ulO %0 C' 0 -' m Ln Nc r,' w C. 0 r4C
0000 00O O '-'~ -4 -4 -4 .4 .- .- .4 ' ' ~

166

IGo

C44

0

c n

CLi
0

"l l l N I I N I I

0

u u 0 "V
0 0,4 -

N~ ~ ~~- -A I H

S-) 0)0 W a) 0 0) ' 0

0% 4 r r-44 4 r- rI 4-44
41 4.) 0 -4-4s - -4 - r- ai r- -

.- -1 4 0 $ = 0 0 0 0 V n
0H 0 " 0 0 0 C c C 0 a C 0

000 000 0 Dr00 0 . . .C

&J -4 "0 'V

0 0 00 0 0 0 0 E 0 0 0 0 0 0 0 w 0 0 0

V' Q

o~' Ci 1.

0 0 0 m C4

00000000"o000 $. 00

4w4 44 i CU -4. C CH0U

m "U "a' m~ Icl a a u" 4'U'

0 0 00 0 0 0 0 0 >s CeUCU0U0U00U0U0 0 UcU

o go --e CiCiC fA >~i u

00 ~0.C.4

00000000M C 0 ---- U %C00 0 00MCC MT0nr4 n
m1mm4 C " -* 11 -.T - 2 T T' rL n nL nL nL %UUCC C C %C %C %C

oc c o ci * c CCCCU) O O O):C~:

167iW U

4 . r4

.11c%

1 41 >

CC~ 4. c C

4 V . .

44Vuv o am41 >.
r_ 4 -4 -4 -4 -4 0 -4 ()'4 (- U 0

UUU SH E US - -~ 4.

- 0 '- 41

5W0.4 4S -4Cl 4.

0000 0 0 S > 0. 0 -

S--4- C -C. k.

0 o 0 0 a4cc
= c = == c w= = - 0) C)I4C

cr $40 411 .0 .. w r-.

>4 >0 >V >0 J >0c4 %c C

0 IV444404-- 10 TO0 U ' D
0 -40 > 0 0 >4 W -0-

41 0-"r,400 0 4 4 0r-
FA 00 00w0 -4 0 Cr W :6E coo %40

'Z (C >IC c

>C >> > >> r_ 0

0 0 0 0 0 1 0 -a .1.1 0) -

0 0 v0"C"D0 0-G G IV 1 401 % 00 *aC.3 . 10X-
0 o~ t)~. 0 C A- 4 0 - t? 0"Cr

-4. 00 0 v 0 g0 ifI & :0r 0444r

-4 0-4i

'4..' 00 00 C u0 u
00 0 = 0) * >>- 21

00 00110 -C i 00 0$.-4 $4
r.00 00 0 41 0 r_ &j"A

-A -- V "4 4.J((A V.- Z-0

w~ ~ a, c 4 m -20, r 4c m z n% O 7 -4 0.-4 en T Y .''0 O

00C)0 000 00.10 C)) 0C 0 0 C) 0C)r-4(C a 0 0 0

18

-0

0

00

c

4
0
Uk -

r.

00
'I Ai "

x '4u
u r.

'4.4 s-W 4 4s

ca 0 oV

-4 E-4 .4 4... -

a.i0 0 0O

GJ"-4109

Appendix D: Listings of Driver Source Files
/sys/h.vg.h and /sys/dev/vg.c

The VG device driver source code is located in two

files; /sys/h/vg.h and /sys/dev/vg.c. These files contain

the final version of the device driver software.

1

170

'-4

an
eq %00

0 40000- 4C4t 40- i . a%

u C 0=" r I-A<

-I 0A c)0 . Z WZF4I aE
0. 0- Au(. 1 e

Go0

0)Go0 0 0 0)40 0 0000000)4 4 W WW WW O4
*a O V 000 0 0 M V - M4 I 10cr-- 100 m0a0-tV-ta 1 m av 0

O0C4gn%: i 0 - 00 0C%0 4C Tk ... 0000007 0 4e ?i 0 00 Cr% -4 e4 e

Id 0 040 000 - r4 -44 -- -4 4 4-4 C-4C4C4C 4 - - - 4 J nMM
00000000000000000000000OOOOOOOO

U U 00.~.4.,171

(.4
4

00

C, 04r

.co

v o 9 00 .

tU P jc

a cw=a 1 a .C 0.

ft gh *"b40 A "- "

U 0000a

m d2~'0 enmm-4 I nLng I-mi A nd.LN%-040% % 0%

o * 000 00 000

0a
0

P.4

4"1

0 .94

to S4

aj>

AiAi4 >c

r4 a c t wr
r- 00 Ai 4 bef -

P.9 4.. a s A

r- r4 v-4 .-r 4 - -

0pt V4 W4-4v lU 9 4 i A

04 ft4 %0 ftf t"kf

00r P %P lG 0g oc o cc cc r F 0% a a%0%0 0 IS

Si173

IM lw

00
+

+
0. .1 4

-+a+

61 0. 0o

>5 IW3- >++L 30e t .c cc 4c
"4 a 9: 0. 0 4c0 .4U40. =)=)4 .) 04

to 4c -, - d. w i i 0 6.
3.4~C, ++ 1.4

u ~ ~~ 0 W4.44++
0 cw C % 41.

ui a. 4) ' 0. > m.

14 .CO0 ..0 1-4

aU . wj- >. 4 =4 C 03 u I
cm a wzm.oc~~.+

0)0 -4 - - --~ W0 -4l~ -4 U4 -U -U......

0 0 0 0 0 0 4v4 -44P4P o- -4 -4 e4 r- 4 4 P4 -4 r-4 N r4 N- r- N4 N4 N4 N N0

174

00

aa

.~ z

$a 0 jC

6U -4 0-.
4

:4 'a S L
0. .- 4 to 45 0$4 E

1. u 1a.4 0 :614 0 w 6 1 : d 0 0
CLs U1 % U 0

". 0 $4 .4. -

60 V44
o 41 -P w 0

C14 U.- -.U4

Nl e 5 % ,0 . 4C n T& Dr 00 0 War TLn% *0%0 e S%

-4 -u4. 0-4 -N - 0 ..- .4- 4 -4- 4

175 JU.0..

I '-4%.- 0 .- IV1
o o 0 61U '-' *oSC'Mmaimi0

'Sim

10 0

000--.

v 0

04 -A 0

.0 co

A 1. 0 .

*0 "4 AI

10

"0 ci 00,

U 0

* 0 %a4. I4

w - 0 -0w

0 th w P

'-a 4JP. .. P.

0 0 0.(P 0

jI 1. "4c"

U 0 0 -4zE

S0 " 600 =) C
0 w i a1-

Cd wI $W 10 w I o

to5 1.-4I V)-4

Go OS.0. - "0.

C4. SIZn %
0% -%D -D %0 000 o o00 co 000 Cr CZ %ac

CO 4 04 -4r 0- 41 4 r - 41 4 4 -Zl- 4 r.44Z 064

Os 0 I.. 000<W 01761

10.

@11

0
1 4 4 4 .

4c A

106

U~4 0). -

00 8 0 0

A1 4* - u

*
0

V-4 co0 AJ 4J 0 C

V aw~ 31 C 14

00 "40

00 4t0

4%4 C @0 1. n 0T- 4 M IT 00% M O1 C %% A
V 0 00 00 4 V- 4- 4 4 -4-4 . .% . -.4-4 . .. C4"C .0 N C

1 .. & 9 - 4 U . -1 7 7

;o

> 0

> A

:1 ".4 4 %#H 4

"4 -%% 0 W Q000 M

0~ >

14 Aj . .0 Ai Ai4 14 4

0u 0 %a:1A C 4 '.4 .0.

>p 04* -40-40v
1:4 " -4

0 0 U.0

0) %...V " 1-
to ~X%UUU

KIh..oJv u.JJ~

ccAiA

".4 co 0 -1
o0

M ~ M ~ M ~ en en M .7 -r 'T -T - -T -T -T *~ IfN Itn 1*1 in In 11 IA I) IA IA %0 'D %D 'D 'D0

178 1

!a'

z 0 6
00>

0>

fM

.I'I

.0 w 0I

to . 4

0 41 (

Aj 0

SU-4

=) -A .0

0 0

,- -L .,-A
U 0 '

i-it

M4 r4 W %0L - C,0- 1

0 0c) 0o0000000Go co0cc000 m700)0C0(

C4 14 .000 1 4 C . 0 N"C (4C 1 40

179 ,

.. ;1 s . ~

AD-A1lS SM2 AIR FDRCE INST OF TECH ARUHMT-PATTERSDN APS ONH 540-fETC FiS 9/2
UNIX BARED DEVICE DRIVER FOR THE VECTOR GENERAL 340R BRAFHICS--ETC(U)

MAR St B ft STEWART

UNCLASSIFIED AFtT/SCS/MA/BID46 weEEEEEEEEEEEEom
EEEEEEEE

0

00

0-

I

a %

00

ulu

w -

wv | 4 W a 0.

41 4- U .V
0 0

04 .- 60 1

0 6
.00

U0 a J l 0 "," -" 0 -J "- -4 -"" 4 4 - r 4C O

-U 4. .

18

* 000

m, .5 Io0 0o -o o o o0 o0oo.0 0 o

180

.. . : u.,.'I:.L .. ,-,.:

-49

-44

*44

uS

> '44

>*

VI

0 -0

0. 0

Aj

CID 0
.0P.

.00

0 %.. 44

v-4 4 -H04
do *a

In 61 6 r
0

1. 0t *0 0

ma %Dr0Wa M0 0 '-4r k %
mmmm mmmU -:r -TT1 rI n nnL nn&n^nDDc

adt - l

0 + 181

000

f +r (

'4 .4 >A

00 W

-a %a 0-~- .

-u U " @

00 to tor @0=

a . --
US 0 = N 1 ~J0~

-44 -1 %a 4 .~

-0 0 u 0000 0 .4 -0

l-M r@5 ~ .'". 0 4 > w00

oi 4.S 0-'4 U .0 z -4 -
00~~~l =I4 %4@@ 0 .5-4 +

@5 a0 u8 H 04.00 u 3
a% 60 0C0

-. 4 41 @ J@ @ 4100

.0 0 m C@

C-4 4 .aaJ w0 0- Ul-.4 c r N 1-4 i %0-' 0 T n%
% *%D UD %a54. %D% 0@5@5%.1. %r r -c O i o cc ococ D0%a %0%0

en ~ ~ ~ ~ O (n en0~. cE1'@ Une ne nc nI nC)e mmmc nc nc ne nc n

~ Sd ~ U..a .0182

co CL

0 0
44

'4

-'-I

0

* 0.

"4so t 00. 6

00
0~ 0I

4- z bu e

r5or
at 0000c

412 0 - .

0% 0' 0% 0 f q4" 4 0 C - C4C C4C
ene T1 7% S 1.1* 1 I T ' -4 -It T TI

0~*183

AI

U

104. a a

441 u4

cc 0 a .0 414

-~~ V 1 0

coU 41.0.6
00 0 0 41 4

00 0 =. - '.0
ow zp 160. cc
CL 60 pf 41 .

U ri 41 0 ,04 to
ao 0 0 'a10 ax

0. 0 0 04 *,4 .0
41 0

0 u C 004 0.
0 61 cc 01C

;a P0 0 0 4.0 to
.0 di 4C

0 > 4~1p 4

41 co 0
'> a A a 4

14 .0

44 1
6- 04 0% 0v4

V.4 P-4 0 0 '4 0
ON. r. a U *a u 41 &

4 -40 a a 0 - c 41

w41 0 r0 1 A
0 40 r4 V4 CA 4 0 A

o~~c I.4(l~
00~C 04 ..

ac0. 41 3 0 + -
4Go 014 Aii-

V44 0 W 44
54 O1U to C4C 0 4

Q Ai4) v-4 0k 1 49
la S - 4 44

in a 00 C6 .0 a I-
044 41 t* 0v &' 06 6

41 .-40 m u-4 4c A 41 1 60C
vVa4) 0 .9 1 S4 +

a. u 0 4 m 0- A
'- 1.4 1 4 " 0 E-4 1341 0) a

go *a 4 . a 41 14 z .99 -4 01
0% 64. " 0540 04

04 46 I-4 0 U I.-
ite 0 b% 41 ~I -

'0 -~~~ 0 rf . ~ ' 0'.
.. 41141414141N 0.

",~ %.O

P- C V S & ar o(N 4C T U arl 0 Q . , l T W DP 0 0 4C
M ne nC ne v)clT 1 3 1' ni ni tIk nL nL D0'

1841

Do

bd

0 (

u .0 60

U)~. 0I 4~
1 V-4 c ; - 9

W4 %. - 0 00

u4 % a1 ine- I" uZ 0
I. 0404 44 u . M

w 0

00 to

W4 Aj

* CC

CM~~~~0 6m %C 0% W0%a Skn%

185

a 0

*~ 0 Z

.3 4

r4Z0 C14 -0.
W4 Z)- 1

00-
>

*1 040
66 45

W 0 W4

041 --ato%04 ~
0J %.. 4 0 0

M- 0 Aj

41 toga c Wa 1
u-1 a.i. to m- 0. 0 ..

a4 "4 > to 0C 44c4 1 O

Ia. 0 to 00
"40 5A60 4 r4 4 8

CL 0 ~ P 4 %I 0 0
sw 44 z4.~

a% 4 441 05
ow j 41 a4.* u. go-

OD440 3 040 go- v 45(3$
on' 6 .- s 0 0.0* C

*y 0 4-0 .45 %0 W 0 I 00

-I -1' 4. 4- 04 .4 -4- " . ..
in 41%- in.... %-.4 Un %nI %n&401LNInL nL nk t nL nL % nW %W

4145 I -. 40 45 .- 4 1864

41 aa46

0 00

410 (A a

4 14 %6 0V

4ao~~ 4 aa44r

41 461j j4

10 s U W s . a

ix 41 4 .0 (a.4. 4c N1
601 m 4.4 4 4A1

0 co01 %a a~.l4~ 4a .*4

0 CLj0 0

4) l 4a -H 00J4~
0 40 :0 ~ oa .. 4

41 %I4 14 k 00-d 6

41o r. 4144111Z 0

01 W 0410 1 a. o

> - - r- .. A >

touu a FA00 4.1 C

v3 41-41000 41..40 -t
V 4ao % a r $4r44~ 1U 60'a &

> u a 0 a-4 I 00
I. 4 421 p45 w. 0 o . =1 .

>i 6 -. L CL m coo a1 > aa p~- 0 0
r.0 41 30 0 00 .- 4 a V -w 0 " a

41 >' (A. tf 10 a-4*4 J1 E v E.-
v00 -aO'0ja'%a > -* -.4' E

41 -4: 0 D14 o1 -. ~-
x0 .0 V k bo4J 0z
4.1 4a t F-A0 > "4 -0 04

V4 v4 4.1 0. '- 60u r

a .0-f 410. -r 01

co 00 E0 49 0 0

0

I 187

0

-w4

0.0

40. w 04W

00

> .t 0 _t

QU)4)0)-i(

'Iv
A 1

o 0 V 0.4 a a0

-4 VdW *.4 0 0 j q0 _w ut .6
* w "V4O~ 96D 4"> 0i D400>JI=

o4 140a3 0 -0 V~ >c
06

44 44 -0 gn %D *% "40 M* Tvi% 0 N (n L 0r D0 4e
%0 0% % % % a% r r-r t- 8 r- r, P.c oo ococ D U oc a %cc

*U k I4 inui% nL nV nL nL ns lu m iw NW Nv nL MV nV%% A
Go.0.0 5

4J ~ 000L~a 188

u *

- '0

*00

1. JJU

V 0
uV

4.1 49'

s 0

0

* '0

0) V4
* A 0

A 00

C A

0

a. -41 e Z) a 1" j zs

&A xA

04 -4 4 a4. -~~ 4.e41

044 .C wU 00 00a,0 1- T0 In 00 rw0 I' n%
MOO %~O 0 0 - 4" -4 -4~4 4- -44 .~ . . . C

6n in b6 i W % %C%%0 C%0 4,0'

0S.00~ U U0 0 0S189Q

40 S .

00

*u 4

0- Aj0)44

0. 0 . '

S % 0 u- r. 4
>% OJcc to $4 -4 -a

V cc :D 0 Z
-H ow r4 40 :D w

Q. C6 r. 0 0 1-4
0A 0 Z Z t- - 4

o- "0 4 4 U 0- Z W1-4
0 -a Z- EZ =4w<

a- ao. w Z 0C

ow d% -0. 0 0 0 -3c-

44 Ud -a.~~ *.O -a
0r 41- to-4-

'. .. -a &j 0 a -4; 0Z=
W 41 -s 0 o

w %.0 :3 a14

oo z "q 1 w c;
> 41 r-~. A4 1 1 0

w.. : m).44c . ZJJJ a
I to a V- 4. > --aaIJ A

E a Ci 0O r. .o : q

01 v -H. > . H-4 046

EU -00 > =z0

40 0) .1 A 0044 0 0 0C 4
V4 vc' $4 >. -H. > >.

0.4 1FA %.0 1

Un 0 '.4*

> V4 60--,

0

0

N 4 4 4 m~ en . (. c'S M ' M ' en S M -It .1 IT .? IT IT7- -7 .7 LA wl i Wu in n tn mA A m ir D

190

Appendix E: Listing of File
/sys/conf/makefile

The file /sys/conf/makefile is used to regenerate the

system during execution of the command "make unix6O".

Line 57 specifies the maximum allowable size (in bytes)

of the system.

I

.

191

ad

'.44
0 J4
00

'.4:
00

- -r-

0 in3
+ ED

gog -41

"4~

00 '

-0 V-4 V4 144K(

od- '-4 .

"4 x. lo x I
1 "4 I I" I0=P

'4 0 tj . L
* 0 44 44 U

al M * 4 0f 0 10W4 c 0 v 0 41 u L

1.= 4C 0 -- 0 j
*C *4 ED *E =I 44 =x rX 'a u 1- IV ** 1 "4

. "4 44 44a .
0 0 0 0~ 0 0.

u U GD 'd U- be~ a .1
0 0 v0 v a.. m tcc>Xt

X f-4 W t r 4 Q a E. a -

04ff 4t 4A 4 fn.4 6M C l W 'us 0 4C4M0% _

0 0 00 4 444 I4 P-4 r41 - . . D e4"4CAC' 4V 4 MC4mi

0 K 0. 'rug S C 5Alm

0.4

(.4

C44

44 x -0

040 0 -4

V. 0 0 0

-. 0 u C

b0 01-4

'-4~ .4 K *

V4. V W4 u-

4.4U)x x-.

"4 P. 4 *4

44 4 -4" 6U I. W -H4 .0

a 0 Ai0 C 0 C6 V0 14 00 44
"4 u) 0- -4 X+ 4b
M c an N 1t A0 00

0) 0 *1 0% 1

ow ~ ~ ~ ~ ~ . '4 cI Hwx- 4x, 1
I %.' v4 I -4 I -4 V -4 V -4 1 - E-4 Z 0. 04 n

S P 44 U-4 -rl 04- 1- "444= "
r_ ~ ~~ ~ ~ ~ ap 9: =r 400

z =00I I .=U
>- to > .> V c 4 (a . w v 0 K 6 F

ri.~C W4 * 4 '

K K '.4 in% r o47 4 ., -1i % .4c 7 0 0- 4.4- I 0ff o 0 K - 4f n%
fnc4 ne n l- TT- a T4 t6%L In4 in4 Cn in 0n &MI 4 % C% 0% 0

o 0 0 0 0 0 4.' ~ 1.4193.

I'

0
* U

0 0

~U

.. 4"

%a • I I

C cc -. A

-, " >. ci ,

) 0

/>

en CLva Mu> G 0.
P4C C U u.

* 14... Li U

- U U 0 0 ,, .

Goo

' 00.00 .,0.

00 F0

C.4 cy en O .0 cca 4C• ' . 5 € 0, .rl. vlD . . 7 ..

%0 t- . . P% P. P. 0O o,4 oooooooooooo 194

.? s0T- UI -i 0 J 0

Appendix F: Creation of Special Files for the

VG Graphics Device

Before Create Special*Files After

I Is /dev c d /dev Iis /dev
console / etclmkrtod gpu c 22 0 console
km., /etc/mknod dtb c 22 1 dtb

II /etc/mknod kbd c 22 2 fse
makeffle # Ietc/mknod fss c 22 3 u
mem # kbd
mk rk07b kuem

mtl makefile
nrmt0 am
nrmtl uk rk07b
null intO
r,tl it
rut 0 nrint0
r ut nr mc 1
r p0 null
rplQ r, ci
rpi3 rmtO
rpl7 rmc I
rrp rpO
rrp0O rplO
rrpl3 rp13
rrpl7 rpl7
rrpll rp3

in rp r rp 0
swap rrplO
tty rrpl3
ttcy0 rrpl7
tty~l rrp3
tty02 sa
tty03 swap
tty4 ttyO
ttyO5 tty~O
tty06 ttyO2
tty07 t ty02
tty08 t ty03

tcyo9tty05
ttyi0 ttyO64 - cyll t tyO7
ccyl2 tty08
tty13 ttcy09
ttyl4 ttyl0
ttyl5 ttyll
VP0 ttyl2

ttyl3
ttyl4
ttyls
VPO

195

Appendix G: Major System Directories

Is1. Iyslconf 0 is Isysldev #Iis Isy s/h Iis /iYS/Sys
C.C LIB2 I cthLIBI i

C-C.IPLIB2i1save buf.h I -d
c*c*58ve LIB2 i.vg callo-h acct-c
c-c-vg LIB2 id conf.h ailoc.c
conf. afit bio.c dir.h clock.c
Conf.afit-lP cat.c dumprestor-h fakemx.c
conf.asd dc-c fbik.h fio-c
convert dh-c file.h iget-c
dtb.c dhdm.c filsys-h macbdep.c
fSS.c dhdm.c.orig ino.h main.c
hkhtconf dhdai.c.v7m inode-h malloc.c
hktuconf dhfdm-c niap.h 3mklib -i
hktsconf dkleave-c mount-h uiklib -id
hphtconf dncmxhnami-c
hptmconf dsort.c mx-h pipe-c
hptsconf du-c pack.b prf-c
kbd.c d z. c param-h priui-c
1.8 hk.c param -i-h rdwri.c
l.s.auto hp.c param i.h.v7m sig-c
1.s.good ht.c param-id.h Slp.C
l*S~lP kl.c pk.h subr.c
i.s.save lP.C pk.p Sysl-c
1.S.vg mem-c prim.h sys2.c
1_- i- ukli proc .h sys3 -C
makefile mklibid pwd.h sys4.c
mchO.s mxl.c- reg.h Syseflt.c
ichI.s inx2.c seg.h text-c
ichi.s.save partab-c smallparam-h trap.c
ichid-s pkO.c stat.h ureg-c
inkconf pkl.c stdio-h
mkconf-c pk2.c systin-h

ukdev id pk3.c term. h
.kdvidrf.c text.b

- iksys_i rk.c titneb-h
inksys_I rl.c tty.ti
rlhtconf rl.c.orig types-h
rltmconf rp.c user.h
rltsconf rx2.c.v7in vg.h
rphtconf sya.c #4 rptmconf t~
rptsconf tm.c
unixi tu-c
unixi-save t~~l
unixId t--l

unixconf Yg~
vg-Conf.lo a d v
vgconf. unload V-

* * vgtest-Cg

196

Appendix H: Rebooting the System from
UNIX Object File /unix.vg

This appendix contains a listing of the commands exe-

cuted to reboot the system from UNIX object file /unix.vg.

This rebooting session was accomplished from the system con-

sole. When the session was begun the system was in multi-

user mode with the system console logged in as the "root"

user executing a monitoring loop.

In this example, all commands typed by the systems

programmer are under scored.

4

197

- --. I -----... M

VC C

a C
*l SC)r- -

C * m ~ o-i0 r 0t. *
* *- 0 %^0 ~

co \1 oHS M1
*~ 111 S11- -

0) 10Si0 H(
4- A * 3 -4 ft4.A 0

a\ ca HSAV oom 0
=r 15 *Mr --TC mC

0 *l Mt ' o L

4 4 * CM* - 4 -\ '
o* CO4 -% DS 4CJ(D- 0M- -mr -
o H * H) c =mHc - -O H *

0 a S . r4H o . U% 0

N. 0 INN S

0 1 .- 4p -H0 H00 o 0~ H0 r

0 A, 0 .vf 0H Al k Hv 4a-- oP r 0 l .- w 4 *lV$

94 Vt *4.r 1 4 4 \JC-) .-4 'i- 4-

eu s~:4 .~-I ~ cO-I 198~

00

0 0
4h 94 k

I~ O199

Vita

Bradley Ray Stewart was born on 5 August 1955 in San

Luis Obispo, California. Bradley graduated with academic

honors from East Union High School, Manteca, California in

1973. He attended Brigham Young University from which he

received a Bachelor of Science degree in Computer Technology

in June 1980. Upon graduation, he received a commission in

the USAF through the ROTC program. He then entered the

School of Engineering, Air Force Institute of Technology,

in June 1980.

Permanent address: 1026 Lewis Oak Road

Gridley, California 95948

20

200i

UNCLASSIFIED
SECURITY CLASS-FI'ATION OF THI ' 01S I*-,, fsls Eneredc)

REPORT DOCUMENTATION PAGE oREAD INSTRUCTIONS
BEFORE COMUPLETING FORM

1. REPORT NUIOrR 12. GOVT ACCESSION NO. 1. PECI-"-FT'S CATA.OG NUMBER

AFIT/GCS/MA/81 0-6 J/- __._.

4. TITLE (and Subtitle) S. TYFE %F REPcRT 4 PERIOD COVERED

A UNIX BASED DEVICE DRIVER FOR THE VECTOR MS Thesis
GENERAL 3404 GRAPHICS DISPLAY SYSTEM 6. PERFORMING OR. REPORT NUMBER

7. AUTHOR(s) S. CONI RACT OR GRANT NUMBER(q)

Bradley R. Stewart

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PPOGPWAM ELEMENT. PROJECT. TASK

Air Force Institute of Technology (AFIT/EN) APEA AWORK UNIT NUMBERS

Wright-Patterson AFB, Ohio 45433

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

March, 1982
13 NUMBER OF PAGES

213
14. MONITORING AGENCY NAME a ADORESS(Il different from Controlling Office) 15. SECURITY CLASS. (of this report)

Uncl assi fied

IS.. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. it different from Report)

,b? Dean for rcco -

15 APR Professional Development
Air Force Lnti.ute of Tchnology (ATC)
W4111t221189SWI tF, QM 15113

IS. SUPPLEMENTARY NOTES

Approve for public release; IAW AFR 190-17

F. v.-LYNtCIM-jeui~tU4 F
DNrectr 6f Informet4on

19. KEY WORDS (Continue on reverse aide it necessary and identify by block number)

UNIX Vector General 3404
Computer Graphics PDPll/60
Peripheral Device 1/0
Device Driver
Device Handler

20. ABSTRACT (Continue on reverse side It necessary and identity by block number)

A device driver for the Vector General 3404 Graphics Display System was
installed under the UNIX version seven operating system on a PDP1l/60 computer.
This was accomplished by modifying an existing device driver which was designed
to run under version six of the UNIX operating system.

The major topics addressed in this report are the C programming language,
peripheral device 1/0 processing under UNIX, the hardware interface between
the PDP11/60 and the graphics display system, the graphics display system

DO oA"7 1473 EDITION Of ' I, OSSo.,TE UNCLASSIFIED "

S6CUITY CLASSIFICATION OF THIS PAGE (Whon DMat ftnfem

IINtI ASSTFTIfD
SECURITY CLASSIFICATION OF THIS PAGE(IWhn Dot& Entered)

itself, and the existing device driver software.

Structure charts were used to document the design of the UNIX peripheral
device I/O processing software and the design of the device driver software.
Modifications to the original device driver were easily accomplished due to
the top-down modular design of the original software. UNIX provided a
straight-forward interface for adding the device driver software to the system.

(

i

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGErshe. Dae EntmeJe

ir

'WI

